Citation: FU Wanchen, LI Qian, FENG Dongdong, WANG Wei. Synthesis and Electrochemical Properties of NiO Nanomaterials with Different Morphologies[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 75-82. doi: 10.11944/j.issn.1000-0518.2019.01.180034 shu

Synthesis and Electrochemical Properties of NiO Nanomaterials with Different Morphologies

  • Corresponding author: WANG Wei, wwchem@chd.edu.cn
  • Received Date: 2 February 2018
    Revised Date: 4 April 2018
    Accepted Date: 24 May 2018

    Fund Project: the Fundamental Research Foundation for the Central Universities 300102298202Supported by the National Natural Science Foundation of China(No.51678059), the Natural Science Fundation of Shaanxi Province(No.2016JM5065), the Fundamental Research Foundation for the Central Universities(No.300102298202)the Natural Science Fundation of Shaanxi Province 2016JM5065the National Natural Science Foundation of China 51678059

Figures(6)

  • NiO nanosheets have been synthesized via a facile solvothermal route using water-ethylene glycol as solvent and polyvinyl pyrrolidone(PVP) as surfactant. These NiO nanosheets were interweaved with each other to form hierarchical flower-shaped structures. Nanocubes and nanospheres were also obtained through changing the reaction temperature and solvent. The electrochemical tests were conducted using a three-electrode system in 6 mol/L KOH with the as-synthesized NiO as the working electrode. Electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. NiO nanosheets exhibit the highest specific capacitance(402 F/g at current density of 0.5 A/g) and the best rate capability(80.1% capacitance retention from 0.5 A/g to 4 A/g). NiO nanosheets also show excellent cycle stability, only lost 9.7% after 1000 cycles.
  • 加载中
    1. [1]

      Jin H, Wang X M, Gu Z R. A Facile Method for Preparing Nitrogen-Doped Grapheme and Its Application in Supercapacitors[J]. J Power Sources, 2015,273:1156-1162. doi: 10.1016/j.jpowsour.2014.10.010

    2. [2]

      Mao L, Li Y, Chi C Y. Conjugated Polyfluorene Imidazolium Ionic Liquids Intercalated Reduced Grapheme Oxide for High Performance Supercapacitor Electrodes[J]. Nano Energy, 2014,6:119-128. doi: 10.1016/j.nanoen.2014.03.018

    3. [3]

      Ingram M D, Staesche H, Ryder K S. Ladder-Doped' Polypyrrole:A Possible Electrode Material for Inclusion in Electrochemical Supercapacitors[J]. J Power Sources, 2004,129(1):107-112. doi: 10.1016/j.jpowsour.2003.11.005

    4. [4]

      Westover A S, Tian J W, Bernath S. A Multifunctional Load-Bearing Solid-State Supercapacitor[J]. Nano Lett, 2014,14(6):3197-3202. doi: 10.1021/nl500531r

    5. [5]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008,7:845-854. doi: 10.1038/nmat2297

    6. [6]

      Gonz lez A, Goikolea E, Barrena J A. Review on Supercapacitors:Technologies and Materials[J]. Renew Sustainable Energ Rev, 2016,58:1189-1206. doi: 10.1016/j.rser.2015.12.249

    7. [7]

      Frackowiak E, Béguin F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors[J]. Carbon, 2001,39(6):937-950. doi: 10.1016/S0008-6223(00)00183-4

    8. [8]

      Subramanian V, Hall S C, Smith P H. Mesoporous Anhydrous RuO2 as a Supercapacitor Electrode Material[J]. Solid State Ionics, 2004,175:511-515. doi: 10.1016/j.ssi.2004.01.070

    9. [9]

      Zheng Y Z, Ding H Y, Zhang M L. Hydrous-Ruthenium-Oxide Thin Film Electrodes Prepares by Cathodic Electrodeposition for Supercapacitors[J]. Thin Solid Films, 2008,516(21):7381-7385. doi: 10.1016/j.tsf.2008.02.022

    10. [10]

      Vijayakumar S, Nagamuthu S, Muralidharan G. Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route[J]. ACS Appl Mater Interfaces, 2013,5(6):2188-2196. doi: 10.1021/am400012h

    11. [11]

      Liu A F, Che H W, Mao Y X. Template-Free Synthesis of One-Dimensional Hierarchical NiO Nanotubes Self-assembled by Nanosheets for High-performance Supercapacitors[J]. Ceram Int, 2016,42(9):11435-11441. doi: 10.1016/j.ceramint.2016.04.080

    12. [12]

      Subramanian V, Zhu H W, Wei B Q. Nanostructured MnO2:Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material[J]. J Power Sources, 2006,159(1):361-364. doi: 10.1016/j.jpowsour.2006.04.012

    13. [13]

      Dong X C, Wang X W, Wang J. Synthesis of a MnO2-Graphene Foam Hybrid with Controlled MnO2 Particle Shape and Its Use as a Supercapacitor Electrode[J]. Carbon, 2012,50:4865-4870. doi: 10.1016/j.carbon.2012.06.014

    14. [14]

      Jang G S, Ameen S, Akhtar M S. Cobalt Oxide Nanocubes as Electrode Material for the Performance Evaluation of Electrochemical Supercapacitor[J]. Ceram Int, 2018,44(1):588-595. doi: 10.1016/j.ceramint.2017.09.217

    15. [15]

      Xia X H, Tu J P, Wang X L. Mesoporous Co3O4 Monolayer Hollow-Sphere Array as Electrochemical Pseudocapacitor Material[J]. Chem Commun, 2011,47(20):5786-5788. doi: 10.1039/c1cc11281c

    16. [16]

      Cheng H L, Su A D, Li S H. Facile Synthesis and Advanced Performance of Ni(OH)2/CNTs Nanoflake Composites on Supercapacitor Applications[J]. Chem Phys Lett, 2014,601(5):168-173.  

    17. [17]

      Lang J W, Kong L B, Wu W J. A Facile Approach to the Preparation of Loose-packed Ni(OH)2 Nanoflake Materials for Electrochemical Capacitors[J]. J Solid State Electrochem, 2009,13(2):333-340. doi: 10.1007/s10008-008-0560-0

    18. [18]

      Zhang Y Q, Xia X H, Tu J P. Self-assembled Synthesis of Hierarchically Porous NiO Film and Its Application for Electrochemical Capacitors[J]. J Power Sources, 2012,199:413-417. doi: 10.1016/j.jpowsour.2011.10.065

    19. [19]

      Sun W H, Chen L H, Meng S J. Synthesis of NiO Nanospheres with Ultrasonic Method for Supercapacitors[J]. Mat Sci Semicon Proc, 2014,17(1):129-133.  

    20. [20]

      Liu M M, Chang J, Sun J. Synthesis of Porous NiO Using NaBH4 Dissolved in Ethylene Glycol as Precipitant for High-performance Supercapacitor[J]. Electrochim Acta, 2013,107:9-15. doi: 10.1016/j.electacta.2013.05.122

    21. [21]

      Kuang M, Wen Z Q, Guo X L. Engineering Firecracker-like Beta-Manganese Dioxides@spinel Nickel Cobaltates Nanostructures for High-Performance Supercapacitors[J]. J Power Sources, 2014,270(4):426-433.  

    22. [22]

      Xiao H H, Yao S Y, Liu H D. NiO Nanosheet Assembles for Supercapacitor Electrode Materials[J]. Prog Nat Sci-Mater, 2016,26(3):271-275. doi: 10.1016/j.pnsc.2016.05.007

    23. [23]

      Zhou H, Lv B L, Xu Y. Synthesis and Electrochemical Properties of NiO Nanospindles[J]. Mater Res Bull, 2014,50(2):399-404.  

    24. [24]

      Yan X Y, Tong X L, Wang J. Rational Synthesis of Hierarchically Porous NiO Hollow Spheres and Their Supercapacitor Application[J]. Mater Lett, 2013,95(3):1-4.  

    25. [25]

      Qian Y, Lu S B, Gao F L. Preparation of MnO2/Graphene Composite as Electrode Material for Supercapacitors[J]. J Mater Sci, 2011,46(10):3517-3522. doi: 10.1007/s10853-011-5260-y

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(14)
  • Abstract views(1230)
  • HTML views(385)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return