Citation: LI Zhuheng, ZHANG Hua, LIU Dianjun, WANG Zhenxin. Application of Three-Dimensional Optical Tomography for in Vivo Bioimaging[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1411-1419. doi: 10.11944/j.issn.1000-0518.2018.12.180186 shu

Application of Three-Dimensional Optical Tomography for in Vivo Bioimaging

  • Corresponding author: WANG Zhenxin, wangzx@ciac.ac.cn
  • Received Date: 23 May 2018
    Revised Date: 6 July 2018
    Accepted Date: 14 August 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.201475126)the National Natural Science Foundation of China 201475126

Figures(4)

  • During three dimensional optical tomography bioimaging, the imaging targets(e.g., cells or tissues) were labeled by optical probes that can emit luminescence or generate strong light scattering under the excitation of an external light source. The three dimensional bioimage including the distribution of emission light in tissue and optical parameters of tissues can be reconstructed by combination of light intensity at the tissue boundary and the model of the photon propagating in the tissue. Three-dimensional optical tomography can provide the distribution information of target in the organism, overcome the limitation of plane imaging, and have great potential in tumor detection, gene expression, protein molecular detection, and revealing the change of body function. Through analyzing the recently published research results, the review summarizes the recent progress of three-dimensional optical tomography imaging technologies including optical coherence tomography(OCT), fluorescent molecular tomography(FMT), bioluminescence tomography(BLT) and Cerenkov luminescence tomography(CLT) in the biomedical and bioanalytical fields. The technical challenges faced in practical applications are analyzed, and the corresponding solutions are discussed.
  • 加载中
    1. [1]

      Cassidy P J, Radda G K. Molecular Imaging Perspectives[J]. J R Soc Interface, 2005,2(3):133-144.  

    2. [2]

      Signore A, Mather S J, Piaggio G. Molecular Imaging of Inflammation/Infection:Nuclear Medicine and Optical Imaging Agents and Methods[J]. Chem Rev, 2010,110(5):3112-3145. doi: 10.1021/cr900351r

    3. [3]

      Maldiney T, Bessiere A, Seguin J. The in Vivo Activation of Persistent Nanophosphors for Optical Imaging of Vascularization, Tumours and Grafted Cells[J]. Nat Mater, 2014,13(4):418-426.  

    4. [4]

      Saadatpour Z, Rezaei A, Ebrahimnejad H. Imaging Techniques:New Avenues in Cancer Gene and Cell Therapy[J]. Cancer Gene Ther, 2017,24(1):1-5. doi: 10.1038/cgt.2016.61

    5. [5]

      Yun S H, Kwok S J J. Light in Diagnosis, Therapy and Surgery[J]. Nat Biomed Eng, 2017,1(6)0008.  

    6. [6]

      Boisselier E, Astruc D. Gold Nanoparticles in Nanomedicine:Preparations, Imaging, Diagnostics, Therapies and Toxicity[J]. Chem Soc Rev, 2009,38(6):1759-1782. doi: 10.1039/b806051g

    7. [7]

      Biju V. Chemical Modifications and Bioconjugate Reactions of Nanomaterials for Sensing, Imaging, Drug Delivery and Therapy[J]. Chem Soc Rev, 2014,43(3):744-764.  

    8. [8]

      Gao X, Li C. Nanoprobes Visualizing Gliomas by Crossing the Blood Brain Tumor Barrier[J]. Small, 2014,10(3):426-440.  

    9. [9]

      Smith B R, Gambhir S S. Nanomaterials for in Vivo Imaging[J]. Chem Rev, 2017,117(3):901-986.  

    10. [10]

      Wang C, Wang Z, Zhao T. Optical Molecular Imaging for Tumor Detection and Image-Guided Surgery[J]. Biomaterials, 2018,157(1):62-75.  

    11. [11]

      Wei Q, Wei A. Optical Imaging with Dynamic Contrast Agents[J]. Chem Eur J, 2011,17(4):1080-1091.  

    12. [12]

      Adhi M, Duker J S. Optical Coherence Tomography-Current and Future Applications[J]. Curr Opin Ophthalmol, 2013,24(3):213-221. doi: 10.1097/ICU.0b013e32835f8bf8

    13. [13]

      Drexler W, Liu M, Kumar A. Optical Coherence Tomography Today:Speed, Contrast, and Multimodality[J]. J Biomed Opt, 2014,19(7)071412. doi: 10.1117/1.JBO.19.7.071412

    14. [14]

      Manen L, Dijkstra J, Boccara C. The Clinical Usefulness of Optical Coherence Tomography During Cancer Interventions[J]. J Cancer Res Clin Oncol, 2018,144(10):1967-1990. doi: 10.1007/s00432-018-2690-9

    15. [15]

      Ntziachristos V, Tung C H, Bremer C. Fluorescence Molecular Tomography Resolves Protease Activity in Vivo[J]. Nat Med, 2002,8(7):757-761. doi: 10.1038/nm729

    16. [16]

      Zou W, Wang J, Hu D. A Reconstruction Approach in Wavelet Domain for Fluorescent Molecular Tomography via Rotated Sources Illumination[J]. Biomed Eng OnLine, 2015,1486. doi: 10.1186/s12938-015-0080-y

    17. [17]

      Zhou Y, Guang H, Pu H. Unmixing Multiple Adjacent Fluorescent Targets with Multispectral Excited Fluorescence Molecular Tomography[J]. Appl Opt, 2016,55(18):4843-4849. doi: 10.1364/AO.55.004843

    18. [18]

      Tang Q, Nagaya T, Liu Y. 3D Mesoscopic Fluorescence Tomography for Imaging Micro-Distribution of Antibody-Photon Absorber Conjugates During Near Infrared Photoimmunotherapy in Vivo[J]. J Control Release, 2018,279:171-180. doi: 10.1016/j.jconrel.2018.04.027

    19. [19]

      Wang G, Hoffman E A, McLennan G. Systems and Methods for Bioluminescent CT Reconstruction: US, 20040249260A1[P]. 2004-12-09.

    20. [20]

      Darne C, Lu Y, Sevick-Muraca E M. Small Animal Fluorescence and Bioluminescence Tomography:A Review of Approaches, Algorithms and Technology Update[J]. Phys Med Biol, 2014,59(1):R1-R64.  

    21. [21]

      Zhang S, Leng C, Liu H. Fast In Vivo Bioluminescence Tomography Using a Novel Pure Optical Imaging Technique[J]. J Innov Opt Heal Sci, 2017,10(3)1750003. doi: 10.1142/S1793545817500031

    22. [22]

      Gao Y, Wang K, Jiang S. Bioluminescence Tomography Based on Gaussian Weighted Laplace Prior Regularization for in Vivo Morphological Imaging of Glioma[J]. IEEE Trans Med Imaging, 2017,36(11):2343-2354. doi: 10.1109/TMI.2017.2737661

    23. [23]

      Qin C, Feng J, Zhu S. Recent Advances in Bioluminescence Tomography:Methodology and System as Well as Application[J]. Laser Photonics Rev, 2014,8(1):94-114. doi: 10.1002/lpor.201280011

    24. [24]

      Robertson R, Germanos M S, Li C. Optical Imaging of Cerenkov Light Generation from Positron-Emitting Radiotracers[J]. Phys Med Biol, 2009,54(16):N355-N365. doi: 10.1088/0031-9155/54/16/N01

    25. [25]

      Li C, Mitchell G S, Cherry S R. Cerenkov Luminescence Tomography for Small-Animal Imaging[J]. Opt Lett, 2010,35(7):1109-1111. doi: 10.1364/OL.35.001109

    26. [26]

      Li C, Di K, Bec J. X-ray Luminescence Optical Tomography Imaging:Experimental Studies[J]. Opt Lett, 2013,38(13):2339-2341. doi: 10.1364/OL.38.002339

    27. [27]

      Lun M C, Zhang W, Li C. Sensitivity Study of X-ray Luminescence Computed Tomography[J]. Appl Opt, 2017,56(11):3010-3019. doi: 10.1364/AO.56.003010

    28. [28]

      Liu M, Zheng S, Zhang X. Cerenkov Luminescence Imaging on Evaluation of Early Response to Chemotherapy of Drug-Resistant Gastric Cancer[J]. Nanomedicine, 2018,14(1):205-213. doi: 10.1016/j.nano.2017.10.001

    29. [29]

      Dothager R S, Goiffon R J, Jackson E. Cerenkov Radiation Energy Transfer(CRET) Imaging:A Novel Method for Optical Imaging of PET Isotopes in Biological Systems[J]. PLoS One, 2010,5(10)e13300. doi: 10.1371/journal.pone.0013300

    30. [30]

      Cao X, Chen X, Kang F. Intensity Enhanced Cerenkov Luminescence Imaging Using Terbium-Doped Gd2O2S Microparticles[J]. ACS Appl Mater Interfaces, 2015,7(22):11775-11782. doi: 10.1021/acsami.5b00432

    31. [31]

      Tamura R, Pratt E C, Grimm J. Innovations in Nuclear Imaging Instrumentation:Cerenkov Imaging[J]. Semin Nucl Med, 2018,48(4):307-308. doi: 10.1053/j.semnuclmed.2018.03.002

    32. [32]

      Smith A M, Mancini M C, Nie S. Bioimaging:Second Window for in Vivo Imaging[J]. Nat Nanotechnol, 2009,4(11):710-711. doi: 10.1038/nnano.2009.326

    33. [33]

      Ntziachristos V. Going Deeper than Microscopy:The Optical Imaging Frontier in Biology[J]. Nat Methods, 2010,7(8):603-614. doi: 10.1038/nmeth.1483

    34. [34]

      Ballou B, Ernst L A, Waggoner A S. Fluorescence Imaging of Tumors in Vivo[J]. Curr Med Chem, 2005,12(7):795-805. doi: 10.2174/0929867053507324

    35. [35]

      Yu G. Near-Infrared Diffuse Correlation Spectroscopy in Cancer Diagnosis and Therapy Monitoring[J]. J Biomed Opt, 2012,17(1)010901. doi: 10.1117/1.JBO.17.1.010901

    36. [36]

      Shang Y, Li T, Yu G. Clinical Applications of Near-Infrared Diffuse Correlation Spectroscopy and Tomography for Tissue Blood Flow Monitoring and Imaging[J]. Physiol Meas, 2017,38(4):R1-R26.  

    37. [37]

      Namikawa T, Sato T, Hanazaki K. Recent Advances in Near-infrared Fluorescence-Guided Imaging Surgery Using Indocyanine Green[J]. Surg Today, 2015,45(12):1467-1474. doi: 10.1007/s00595-015-1158-7

    38. [38]

      Haque A, Faizi S H, Rather J A. Next Generation NIR Fluorophores for Tumor Imaging and Fluorescence-Guided Surgery:A Review[J]. Bioorg Med Chem, 2017,25(7):2017-2034. doi: 10.1016/j.bmc.2017.02.061

    39. [39]

      Zhang R R, Schroede A B, Grudzinksi J J. Beyond the Margins:Real-Time Detection of Cancer Using Targeted Fluorophores[J]. Nat Rev Clin Oncol, 2017,14(6):347-364. doi: 10.1038/nrclinonc.2016.212

    40. [40]

      Reineck P, Gibson B C. Near-Infrared Fluorescent Nanomaterials for Bioimaging and Sensing[J]. Adv Opt Mater, 2017,5(2)1600446. doi: 10.1002/adom.v5.2

    41. [41]

      Zhao J, Zhong D, Zhou S. NIR-Ⅰ-to-NIR-Ⅱ Fluorescent Nanomaterials for Biomedical Imaging and Cancer Therapy[J]. J Mater Chem B, 2018,6(3):349-365. doi: 10.1039/C7TB02573D

    42. [42]

      Antaris A L, Chen H, Cheng K. A Small-Molecule Dye for NIR-Ⅱ Imaging[J]. Nat Mater, 2016,15(2):235-242.  

    43. [43]

      Park Y I, Lee K T, Suh Y D. Upconverting Nanoparticles:A Versatile Platform for Wide-Field Two-Photon Microscopy and Multi-modal in Vivo Imaging[J]. Chem Soc Rev, 2015,44(6):1302-1317. doi: 10.1039/C4CS00173G

    44. [44]

      Liu J, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia[J]. Chem Rev, 2017,117(9):6160-6224. doi: 10.1021/acs.chemrev.6b00525

    45. [45]

      Chen X J, Zhang X Q, Liu Q. Nanotechnology:A Promising Method for Oral Cancer Detection and Diagnosis[J]. J Nanobiotechnology, 2018,16(1)52. doi: 10.1186/s12951-018-0378-6

    46. [46]

      Liu F, He X, Liu L. Conjugation of NaGdF4 Upconverting Nanoparticles on Silica Nanospheres as Contrast Agents for Multi-modality Imaging[J]. Biomaterials, 2013,34(21):5218-5225. doi: 10.1016/j.biomaterials.2013.03.058

    47. [47]

      Liu F, He X, Lei Z. Cancer Theranostics:Facile Preparation of Doxorubicin-Loaded Upconversion@Polydopamine Nanoplatforms for Simultaneous in Vivo Multimodality Imaging and Chemophotothermal Synergistic Therapy[J]. Adv Healthcare Mater, 2015,4(3):559-568.

    48. [48]

      Tian R, Zhang H, Chen H. Uncovering the Binding Specificities of Lectins with Cells for Precision Colorectal Cancer Diagnosis Based on Multimodal Imaging[J]. Adv Sci, 2018,5(6)1800214. doi: 10.1002/advs.v5.6

    49. [49]

      Huang D, Swanson E A, Lin C P. Optical Coherence Tomography[J]. Science, 1991,254(5035):1178-1181. doi: 10.1126/science.1957169

    50. [50]

      Schmitt J M, Knuttel A, Yadlowsky M. Optical-Coherence Tomography of a Dense Tissue:Statistics of Attenuation and Backscattering[J]. Phys Med Biol, 1994,39(10):1705-1720. doi: 10.1088/0031-9155/39/10/013

    51. [51]

      Fercher A F, Drexler W, Hitzenberger C K. Optical Coherence Tomography-Principles and Applications[J]. Rep Prog Phys, 2003,66(2):239-303. doi: 10.1088/0034-4885/66/2/204

    52. [52]

      Li Y, Choi W J, Qin W. Optical Coherence Tomography Based Microangiography Provides an Ability to Longitudinally Image Arteriogenesis in Vivo[J]. J Neurosci Methods, 2016,274(1):164-171.  

    53. [53]

      Wi J S, Park J, Kang H. Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging[J]. ACS Nano, 2017,11(6):6225-6232. doi: 10.1021/acsnano.7b02337

    54. [54]

      Oldenburg A L, Toublan F, Suslick K. Magnetomotive Contrast for in Vivo Optical Coherence Tomography[J]. Opt Express, 2005,13(17):6597-6614. doi: 10.1364/OPEX.13.006597

    55. [55]

      John R, Rezaeipoor R, Adie S G. In Vivo Magnetomotive Optical Molecular Imaging Using Targeted Magnetic Nanoprobes[J]. Proc Natl Acad Sci USA, 2010,107(18):8085-8090. doi: 10.1073/pnas.0913679107

    56. [56]

      Tang P, Jiang X, Wang Y. Plasmonic Nanoprobe of (Gold Triangular Nanoprism Core)/(Polyaniline Shell) for Real-Time Three-Dimensional pH Imaging of Anterior Chamber[J]. Anal Chem, 2017,89(18):9758-9766. doi: 10.1021/acs.analchem.7b01623

    57. [57]

      Jiang X, Tang P, Gao P. Gold Nanoprobe-Enabled Three-Dimensional Ozone Imaging by Optical Coherence Tomography[J]. Anal Chem, 2017,89(4):2561-2568. doi: 10.1021/acs.analchem.6b04785

    58. [58]

      Xi L, Satpathy M, Zhao Q. HER-2/neu Targeted Delivery of a Nanoprobe Enables Dual Photoacoustic and Fluorescence Tomography of Ovarian Cancer[J]. Nanomedicine, 2014,10(3):669-677. doi: 10.1016/j.nano.2013.11.004

    59. [59]

      Wu Z, Wang X, Yu J. Synchronization-Based Clustering Algorithm for Reconstruction of Multiple Reconstructed Targets in Fluorescence Molecular Tomography[J]. J Opt Soc Am A Opt Image Sci Vis, 2018,35(2):328-335. doi: 10.1364/JOSAA.35.000328

    60. [60]

      Suff N, Waddington S N. The Power of Bioluminescence Imaging in Understanding Host-Pathogen Interactions[J]. Methods, 2017,127(1):69-78.  

    61. [61]

      Mezzanotte L, van't Root M, Karatas H. In Vivo Molecular Bioluminescence Imaging:New Tools and Applications[J]. Trends Biotechnol, 2017,35(7):640-652. doi: 10.1016/j.tibtech.2017.03.012

    62. [62]

      Wang G, Cong W, Durairaj K. In Vivo Mouse Studies with Bioluminescence Tomography[J]. Opt Express, 2006,14(17):7801-7809. doi: 10.1364/OE.14.007801

    63. [63]

      Shi J, Udayakumar T S, Xu K. Bioluminescence Tomography Guided Small-Animal Radiation Therapy and Tumor Response Assessment[J]. Int J Radiat Oncol Biol Phys, 2018,S0360/3016(18):30182-2.  

    64. [64]

      Ma X, Hui H, Jin Y. Enhanced Immunotherapy of SM5-1 in Hepatocellular Carcinoma by Conjugating with Gold Nanoparticles and Its in Vivo Bioluminescence Tomographic Evaluation[J]. Biomaterials, 2016,87(1):46-56.  

    65. [65]

      Li M T, Wang Y C, Liu M. Multimodality Reporter Gene Imaging:Construction Strategies and Application[J]. Theranostics, 2018,8(11):2954-2973. doi: 10.7150/thno.24108

    66. [66]

      Spinelli A E, Ferdeghini M, Cavedon C. First Human Cerenkography[J]. J Biomed Opt, 2013,18(2)020502. doi: 10.1117/1.JBO.18.2.020502

    67. [67]

      Balkin E R, Kenoyer A, Orozco J J. In Vivo Localization of 90Y and 177Lu Radioimmunoconjugates Using Cerenkov Luminescence Imaging in a Disseminated Murine Leukemia Model[J]. Cancer Res, 2014,74(20):5846-5854. doi: 10.1158/0008-5472.CAN-14-0764

    68. [68]

      Madru R, Tran T A, Axelsson J. 68Ga-Labeled Superparamagnetic Iron Oxide Nanoparticles(SPIONs) for Multi-modality PET/MR/Cherenkov Luminescence Imaging of Sentinel Lymph Nodes[J]. Am J Nucl Med Mol Imaging, 2014,4(1):60-69.  

    69. [69]

      Hu Z, Chi C, Liu M. Nanoparticle-Mediated Radiopharmaceutical-Excited Fluorescence Molecular Imaging Allows Precise Image-Guided Tumor-Removal Durgery[J]. Nanomedicine:NBM, 2017,13(4):1323-1331. doi: 10.1016/j.nano.2017.01.005

    70. [70]

      Hu Z, Qu Y, Wang K. In Vivo Nanoparticle-Mediated Radiopharmaceutical-Excited Fluorescence Molecular Imaging[J]. Nat Commun, 2015,67560. doi: 10.1038/ncomms8560

    71. [71]

      Volotskova O, Sun C, Stafford J H. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging[J]. Small, 2015,11(32):4002-4008. doi: 10.1002/smll.201500907

    72. [72]

      Bernhard Y, Collin B, Decréau R A. Redshifted Cherenkov Radiation for in Vivo Imaging:Coupling Cherenkov Radiation Energy Transfer to Multiple Förster Resonance Energy Transfers[J]. Sci Rep, 2017,745063. doi: 10.1038/srep45063

    73. [73]

      Pratt E C, Shaffer T M, Zhang Q. Nanoparticles as Multimodal Photon Transducers of Ionizing Radiation[J]. Nat Nanotechnol, 2018,418(13):418-426.  

    74. [74]

      Jöbsis F F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters[J]. Science, 1977,198(4323):1264-1267. doi: 10.1126/science.929199

    75. [75]

      Smith A M, Mancini M C, Nie S. Second Window for in Vivo Imaging[J]. Nat Nanotechnol, 2009,4(11):710-711. doi: 10.1038/nnano.2009.326

    76. [76]

      Zhu B, Godavarty A. Near-Infrared Fluorescence-Enhanced Optical Tomography[J]. Biomed Res Int, 2016,20165040814.  

    77. [77]

      Owens E A, Henary M, El Fakhri G. Tissue-Specific Near-infrared Fluorescence Imaging[J]. Acc Chem Res, 2016,49(9):1731-1740. doi: 10.1021/acs.accounts.6b00239

    78. [78]

      Cornelissen A J M, van Mulken T J M, Graupner C. Near-infrared Fluorescence Image-Guidance in Plastic Surgery:A Systematic Review[J]. Eur J Plast Surg, 2018,41(3):269-278. doi: 10.1007/s00238-018-1404-5

    79. [79]

      Ding F, Zhan Y, Lu X. Recent Advances in Near-infrared Ⅱ Fluorophores for Multifunctional Biomedical Imaging[J]. Chem Sci, 2018,9(19):4370-4380. doi: 10.1039/C8SC01153B

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(3)
  • Abstract views(595)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return