Citation: ZHANG Xiaosa, JI Shengxiang. Synthesis and Directed Self-assembly of Cylinder-Forming Poly(styrene-b-lactide) Block Copolymers[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1420-1426. doi: 10.11944/j.issn.1000-0518.2018.12.180075 shu

Synthesis and Directed Self-assembly of Cylinder-Forming Poly(styrene-b-lactide) Block Copolymers

  • Corresponding author: JI Shengxiang, sji@ciac.ac.cn
  • Received Date: 19 March 2018
    Revised Date: 19 April 2018
    Accepted Date: 6 June 2018

    Fund Project: the National Natural Science Foundation of China 51773201the Department of Science and Technology of Jilin Province 20160414032GHSupported by the National Natural Science Foundation of China(No.51773201), the Department of Science and Technology of Jilin Province(No.20160414032GH)

Figures(6)

  • Two cylinder-forming poly(styrene-b-lactide)s, poly(styrene-b-D, L-lactide)(PS-b-PDLLA) and poly(styrene-b-L-lactide))(PS-b-PLLA), with similar domain sizes(LO) were synthesized using ring opening polymerization(ROP) of lactide monomers from hydroxy-terminated polystyrene(PS-OH) with zinc octoate(Sn(Oct)2) as the catalyst and characterized by nuclear magnetic resonance spectroscopy(NMR), gel permeation chromatography(GPC), differential scanning calorimetry(DSC), thermal gravimetric analyzer(TGA) and small-angle X-ray scattering(SAXS). Thin films of PS-b-PDLLA and PS-b-PLLA were directed to assemble on hexagonal arrays of spot chemical patterns with a range of pattern periods(LS) under thermal annealing. SEM analysis of the two assembled films revealed that long-range ordered perpendicularly-oriented hexagonal-array cylinders were obtained in both films. The range of LS window for defect-free assembly of perpendicular cylinders was larger in PS-b-PDLLA films than that in PS-b-PLLA films, which is similar to the assembly behavior of lamellar-forming PS-b-PLA on stripe chemical patterns.
  • 加载中
    1. [1]

      Ji S, Wan L, Liu C C. Directed Self-Assembly of Block Copolymers on Chemical Patterns:A Platform for Nanofabrication[J]. Prog Polym Sci, 2016,54/55:76-127. doi: 10.1016/j.progpolymsci.2015.10.006

    2. [2]

      Bates F S, Fredrickson G H. Block Copolymer Thermodynamics-Theory and Experiment[J]. Annu Rev Phys Chem, 1990,41(1):525-557. doi: 10.1146/annurev.pc.41.100190.002521

    3. [3]

      Park S, Wang J Y, Kim B. Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films[J]. Macromolecules, 2007,40(25):9059-9063. doi: 10.1021/ma071321z

    4. [4]

      Park S, Kim B, Xu J. Lateral Ordering of Cylindrical Microdomains under Solvent Vapor[J]. Macromolecules, 2009,42(4):1278-1284. doi: 10.1021/ma802480s

    5. [5]

      Lee D H, Park S, Gu W Y. Highly Ordered Nanoporous Template from Triblock Copolymer[J]. ACS Nano, 2011,5(2):1207-1214. doi: 10.1021/nn102832c

    6. [6]

      Albalak R J, Thomas E L. Microphase Separation of Block Copolymer Solutions in a Flow Field[J]. J Polym Sci, Part B:Polym Phys, 1993,31(1):37-46. doi: 10.1002/polb.1993.090310106

    7. [7]

      Koppi K A, Tirrell M, Bates F S. Shear Induced Isotropicto-Lamellar Transition[J]. Phys Rev Lett, 1993,70(10):1449-1452. doi: 10.1103/PhysRevLett.70.1449

    8. [8]

      Chen Z R, Kornfield J A, Smith S D. Pathways to Macroscale Order in Nanostructured Block Copolymers[J]. Science, 1997,277(5330):1248-1253.  

    9. [9]

      Morkved T L, Lu M, Urbas A M. Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields[J]. Science, 1996,273(5277):931-933. doi: 10.1126/science.273.5277.931

    10. [10]

      Thurn-Albrecht T, Schotter J, Kästle G A. Ultrahigh-Density Nanowire Arrays Grown in Self-assembled Diblock Copolymer Templates[J]. Science, 2000,290(5499):2126-2129. doi: 10.1126/science.290.5499.2126

    11. [11]

      Olszowka V, Hund M, Kuntermann V. Electric Field Alignment of a Block Copolymer Nanopattern:Direct Observation of the Microscopic Mechanism[J]. ACS Nano, 2009,3(5):1091-1096. doi: 10.1021/nn900081u

    12. [12]

      Hashimoto T, Bodycomb J, Funaki Y. The Effect of Temperature Gradient on the Microdomain Orientation of Diblock Copolymers Undergoing an Order-Disorder Transition[J]. Macromolecules, 1999,32(3):952-954. doi: 10.1021/ma981249s

    13. [13]

      Mita K, Takenaka M, Hasegawa H. Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient:Real-Space Analysis[J]. Macromolecules, 2008,41(22):8789-8799. doi: 10.1021/ma801750c

    14. [14]

      Kim S O, Solak H H, Stoykovich M P. Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates[J]. Nature, 2003,424(6947):411-414. doi: 10.1038/nature01775

    15. [15]

      Ruiz R, Kang H M, Detcheverry F A. Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly[J]. Science, 2008,321(5891):936-939. doi: 10.1126/science.1157626

    16. [16]

      Ji S, Nagpal U, Liu G. Directed Assembly of Non-equilibrium ABA Triblock Copolymer Morphologies on Nanopatterned Substrates[J]. ACS Nano, 2012,6(6):5440-5448. doi: 10.1021/nn301306v

    17. [17]

      Cheng J, Mayes A M, Ross C A. Nanostructure Engineering by Templated Self-assembly of Block Copolymers[J]. Nat Mater, 2004,3(11):823-828. doi: 10.1038/nmat1211

    18. [18]

      Chai J, Wang D, Fan X N. Assembly of Aligned Linear Metallic Patterns on Silicon[J]. Nat Nanotechnol, 2007,2(8):500-506. doi: 10.1038/nnano.2007.227

    19. [19]

      Bita I, Yang J K W, Jung Y S. Graphoepitaxy of Self-assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates[J]. Science, 2008,321(5891):939-943. doi: 10.1126/science.1159352

    20. [20]

      Gamys C G, Schumers J, Mugemana C. Pore-Functionalized Nanoporous Materials Derived from Block Copolymers[J]. Macromol Rapid Commun, 2013,34(12):962-982. doi: 10.1002/marc.v34.12

    21. [21]

      Zalusky A S, Olayo-Valles R, Wolf J H. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers[J]. J Am Chem Soc, 2002,124(43):12761-12773. doi: 10.1021/ja0278584

    22. [22]

      Cummins C, Mokarian-Tanari P, Holmes J D. Selective Etching of Polylactic Acid in Poly(styrene)-block-Poly(D, L)Lactide Diblock Copolymer for Nanoscale Patterning[J]. J Appl Polym Sci, 2014,131(18)40798.  

    23. [23]

      Hou X, Li Q, Cao A. In Situ Aggregates of Enantiomeric Poly(styrene)-block-Poly(lactide) Diblock Copolymers via Stereocomplexation in a Non-selective Solvent[J]. Macromol Chem Phys, 2013,214(14):1569-1579. doi: 10.1002/macp.v214.14

    24. [24]

      Hsueh H Y, Yao C T, Ho R M. Well-Ordered Nanohybrids and Nanoporous Materials from Gyroid Block Copolymer Templates[J]. Chem Soc Rev, 2015,44(7):1974-2018. doi: 10.1039/C4CS00424H

    25. [25]

      Rzayev J, Hillmyer M A. Nanochannel Array Plastics with Tailored Surface Chemistry[J]. J Am Chem Soc, 2005,127(38):13373-13379. doi: 10.1021/ja053731d

    26. [26]

      Wolf F F, Friedemann N, Frey H. Poly(lactide)-block-Poly(HEMA) Block Copolymers:An Orthogonal One-Pot Combination of ROP and ATRP, Using a Bifunctional Initiator[J]. Macromolecules, 2009,42(15):5622-5628. doi: 10.1021/ma900894d

    27. [27]

      Mazarro R, Gracia I, Rodr guze J F. Kinetics of the Ring-Opening Polymerization of D, L-Lactide Using Zinc(Ⅱ) Octoate as Catalyst[J]. Polym Int, 2012,61(2):265-273. doi: 10.1002/pi.v61.2

    28. [28]

      Ho R M, Chiang Y W, Tsai C C. Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers[J]. J Am Chem Soc, 2004,126(9):2704-2705. doi: 10.1021/ja039627i

    29. [29]

      Li X, Liu Y, Wan L. Effect of Stereochemistry on Directed Self-assembly of Poly(styrene-b-lactide) Films on Chemical Patterns[J]. ACS Macro Lett, 2016,5(3):396-401. doi: 10.1021/acsmacrolett.6b00011

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(2)
  • Abstract views(1187)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return