Citation: WANG Dongsheng, WEN Xin, LI Yunhui, TANG Tao. Silica Grafted 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and Its Effect on Flame Retardancy and Transparency of Polymethyl Methacrylate Nanocomposites[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1427-1433. doi: 10.11944/j.issn.1000-0518.2018.12.180038 shu

Silica Grafted 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and Its Effect on Flame Retardancy and Transparency of Polymethyl Methacrylate Nanocomposites

  • Corresponding author: WEN Xin, wenxin@ciac.ac.cn LI Yunhui, liyh@cust.edu.cn
  • Received Date: 7 February 2018
    Revised Date: 29 March 2018
    Accepted Date: 25 May 2018

    Fund Project: the National Natural Science Foundation of China 51773202the National Natural Science Foundation of China 21204079Supported by the National Natural Science Foundation of China(No.51773202, No.21204079)

Figures(7)

  • Polymethyl methacrylate(PMMA) is one of important polymer materials with good transparency, but the poor flame retardancy of PMMA greatly limits its application.In this work, 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) was grafted onto the surface of silica nanoparticles that were employed to prepare PMMA nanocomposites.The results from limiting oxygen index(LOI), vertical burning(UL-94) and cone calorimeter test(CCT) indicate that the modified silica can effectively improve the flame retardancy of PMMA, which is mainly attributed to the synergistic effect between nanoparticles and phosphorous flame retardant to form compact protective carbon layer.Meanwhile, similar to pure PMMA, the as-prepared PMMA nanocomposites keep good transparency, which is positive to the wide applications of PMMA with high demand of optical transparency.
  • 加载中
    1. [1]

      CHEN Xi, SONG Lingxiao, LIU Yongxin. Exploration on Application Fields of High Polymer Material[J]. Heilongjiang Sci, 2016,7(10):24-25. doi: 10.3969/j.issn.1674-8646.2016.10.010

    2. [2]

      WANG Miao.Study on the Preparation and Properties of Transparent Magnesium Hydroxide Nanodispersion and Its Nanocomposites[D].Beijing: Beijing University of Chemical Technology, 2016(in Chinese).

    3. [3]

      JIANG Saihua.Design, Preparation and Property Studies of Novel Transparent Flame-retardant Polymethyl Methacrylate with Enhanced Thermal Property[D].Hefei: University of Science and Technology of China, 2014(in Chinese).

    4. [4]

      Zhu L Y, Su S, Hossenlopp J M. Thermal Stability and Fire Retardancy of PMMA(nano) Composites with Layered Metal Hydroxides Containing Dodecyl Sulfate Anions[J]. Polym Adv Technol, 2012,23(2):171-181. doi: 10.1002/pat.v23.2

    5. [5]

      YUAN Xinqiang, JIANG Peng, ZHANG Yingtang. Investigation on Fire Retardant and Heat Insulation Performance of PMMA/Fly Ash/Mg(OH)2 Composite[J]. China Plast, 2014,28(1):84-87.  

    6. [6]

      Jiang S H, Yang H Y, Qian X D. A Novel Transparent Cross-linked Poly(methyl methacrylate)-based Copolymer with Enhanced Mechanical, Thermal, and Flame-Retardant Properties[J]. Ind Eng Chem Res, 2014,53(10):3880-3887. doi: 10.1021/ie4035863

    7. [7]

      Jiang S H, Zhu Y L, Hu Y. In Situ Synthesis of a Novel Transparent Poly(methyl methacrylate) Resin with Markedly Enhanced Flame Retardancy[J]. Polym Adv Technol, 2016,27(2):266-272. doi: 10.1002/pat.v27.2

    8. [8]

      Basuli U, Palaninathan E, Chaki T K. Effect of Plasma, Gamma and Chemically Surface Modified MWNTs on the Rheological and Electrical Properties of Ethylene Methyl Acrylate(EMA) Nanocomposites[J]. J Nanosci Nanotechnol, 2018,18(7):4621-4633. doi: 10.1166/jnn.2018.15268

    9. [9]

      Jahan Z, Niazi M B K, Gregersen Ø W. Mechanical, Thermal and Swelling Properties of Cellulose Nanocrystals/PVA Nanocomposites Membranes[J]. J Ind Eng Chem, 2018,57:113-124. doi: 10.1016/j.jiec.2017.08.014

    10. [10]

      Sakakibara K, Moriki Y, Yano H. Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants[J]. ACS Appl Mater Interfaces, 2017,9(50):44079-44087. doi: 10.1021/acsami.7b13963

    11. [11]

      Yan W, Yu J, Zhang M Q. Enhanced Flame Retardancy of Epoxy Resin Containing a Phenethyl-bridged DOPO Derivative/Montmorillonite Compound[J]. J Fire Sci, 2018,36(1):47-62. doi: 10.1177/0734904117740820

    12. [12]

      Buczko A, Stelzig T, Bommer L. Bridged DOPO Derivatives as Flame Retardants for PA6[J]. Polym Degrad Stab, 2014,107:158-165. doi: 10.1016/j.polymdegradstab.2014.05.017

    13. [13]

      Wen X, Lin Y, Han C Y. Thermomechanical and Optical Properties of Biodegradable Poly(L-lactide)/Silica Nanocomposites by Melt Compounding[J]. J Appl Polym Sci, 2009,114(6):3379-3388. doi: 10.1002/app.v114:6

    14. [14]

      Qian X D, Pan H F, Yi X W. Thermal Properties of Novel 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene 10-Oxide-based Organic/Inorganic Hybrid Materials Prepared by Sol-gel and UV-curing Processes[J]. Ind Eng Chem Res, 2011,51(1):85-94.  

    15. [15]

      Cao Y, Wang X L, Zhang W Q. Bi-DOPO Structure Flame Retardants with or Without Reactive Group:Their Effects on Thermal Stability and Flammability of Unsaturated Polyester[J]. Ind Eng Chem Res, 2017,56(20):5913-5924. doi: 10.1021/acs.iecr.7b00711

    16. [16]

      Yang H F, Ye L, Gong J. Simultaneously Improving the Mechanical Properties and Flame Retardancy of Polypropylene Using Functionalized Carbon Nanotubes by Covalently Wrapping Flame Retardants Followed by Linking Polypropylene[J]. Mater Chem Front, 2017,1(4):716-726. doi: 10.1039/C6QM00172F

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(3)
  • Abstract views(552)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return