Citation: ZHANG Qingxuan, LI Jintao, ZHANG Meng. Characteristics of Pyrolysis-Oxidation Reactions of Merey Crude Oil in Air and Nitrogen[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1470-1477. doi: 10.11944/j.issn.1000-0518.2018.12.180029 shu

Characteristics of Pyrolysis-Oxidation Reactions of Merey Crude Oil in Air and Nitrogen

  • Corresponding author: ZHANG Qingxuan, zhangqx@upc.edu.cn
  • Received Date: 29 January 2018
    Revised Date: 17 April 2018
    Accepted Date: 23 May 2018

    Fund Project: the Fundamental Research Funds for the Central Universities 09CX04030Athe State Key Laboratory of Heavy Oil Processing F0904009-10Supported by the Fundamental Research Funds for the Central Universities(No.09CX04030A), the State Key Laboratory of Heavy Oil Processing(No.F0904009-10)

Figures(6)

  • Low-temperature oxidation is an important chemical reaction in air injection and in-situ combustion processes for enhanced oil recovery. To further understand the low temperature oxidation mechanism of intricate thermal reactions of crude oil in aerobic environment, the thermal behavior of Merey crude oil was investigated by thermogravimetry/differential thermal analysis(TG/DTA) in air and under nitrogen atmosphere. The results show that the four reaction intervals including gasification, low temperature oxidation, pyrolysis and high temperature oxidation are observed for the thermal process of Merey crude oil in air with a linear heating rate. The overlap of dominant physical and chemical processes in adjacent intervals sophisticates the characteristics of the oil thermal reaction. The invariant final temperature of gasification and low temperature oxidation intervals as well as the elevated final temperature of pyrolysis and high temperature oxidation intervals along with a raised peak temperature of pyrolysis interval are obtained as the heating rate increases. The comparison of TG/DTG experiments in air and under N2 atmosphere show that an increasing overlap of high temperature oxidation and pyrolysis intervals is observed as the heating rate increases, which is in favor of coke combustion but adverse to the enhanced oil recovery. The isothermal TG/DTA results show that the ratio of mass loss at temperature 300℃ decreases with the increase of the heating rate in air, which is not conducive to the gasification of light components of oil. The higher isothermal reaction temperature corresponds to the longer process of gasification and the greater mass loss. The oxidation is not the main reaction for Merey crude oil below 300℃.
  • 加载中
    1. [1]

      Castanier L M, Brigham W E. Upgrading of Crude Oil via in Situ Combustion[J]. J Pet Sci Eng, 2003,39(1):125-136.  

    2. [2]

      Manrique E, Thomas C, Ravikiran R, et al. EOR: Current Status and Opportunities[C]//2010 SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma, USA, 2010: 1-21.

    3. [3]

      Turta A T, Chattopadhyay S K, Bhattacharya R N. Current Status of Commercial in Situ Combustion Projects Worldwide[J]. J Can Petrol Technol, 2007,46(11):8-14.

    4. [4]

      Chattopadhyay S K, Binay R, Bhattacharya R N, et al. Enhanced Oil Recovery by in-situ Combustion Process in Santhal Field of Cambay Basin, Mehsana, Gujarat, India-A Case Study[C]//SPE/DOE Symposium on Improved Oil Recovery, 17-21 April, Tulsa, Oklahoma, 2004.

    5. [5]

      Yuan C D, Pu W F, Jin F Y. Characterizing the Fuel Deposition Process of Crude Oil Oxidation in Air Injection[J]. Energy Fuels, 2015,29(11):7622-7629. doi: 10.1021/acs.energyfuels.5b01493

    6. [6]

      Khansari Z. Low Temperature Oxidation of Heavy Crude Oil: Experimental Study and Reaction Modeling[D]. Calgary: University of Calgary, 2014. 

    7. [7]

      Kok M V, Gundogar A S. DSC Study on Combustion and Pyrolysis Behaviors of Turkish Crude Oils[J]. Fuel Process Technol, 2013,116(6):110-115.  

    8. [8]

      Khansari Z, Kapadia P, Mahinpey N. A New Reaction Model for Low Temperature Oxidation of Heavy Oil:Experiments and Numerical Modeling[J]. Energy, 2014,64(1):419-428.  

    9. [9]

      Hussain A. Influence of Chemical Reactions on in Situ Combustion: A Simulation Study[D]. Delft: Delft University of Technology, 2011.

    10. [10]

      Niu B L, Ren S R, Liu Y H. Low Temperature Oxidation of Oil Components in an Air Injection Process for Improved Oil Recovery[J]. Energy Fuels, 2011,25(10):4299-4304. doi: 10.1021/ef200891u

    11. [11]

      Freitag N P. Evidence that Naturally Occurring Inhibitors Affect the Low Temperature Oxidation Kinetics of Heavy Oil[J]. J Can Petrol Technol, 2010,49(7):36-41. doi: 10.2118/138970-PA

    12. [12]

      Gui B, Yang Q Y, Wu H J. Study of the Effect of Low Temperature Oxidation on the Chemical Composition of a Light Crude Oil[J]. Energy Fuels, 2010,24(2):1139-1145.

    13. [13]

      Murugan P, Mahinpey N, Mani T. Effect of Low Temperature Oxidation on the Pyrolysis and Combustion of Whole Oil[J]. Energy, 2010,35(5):2317-2322. doi: 10.1016/j.energy.2010.02.022

    14. [14]

      Al-Saffar H B, Hasanin H, Price D. Oxidation Reactions of a Light Crude Oil and Its SARA Fractions in Consolidated Cores[J]. Energy Fuels, 2001,15(1):182-188.  

    15. [15]

      Hu J, Ni J H, Pu W F. New View on the Oxidation Mechanisms of Crude Oil Through Combined Thermal Analysis Methods[J]. J Therm Anal Calorim, 2014,118(3):1707-1714.  

    16. [16]

      Alexandra U, Vladislav Z, Mikhail V. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for in Situ Combustion Process[J]. J Combust, 2017(2017):1-11.

    17. [17]

      Karacan O, Kok M V. Pyrolysis Analysis of Crude Oils and Their Fractions[J]. Energy Fuels, 1997,11(2):385-391.  

    18. [18]

      Castano L C U. Coke Formation During Thermal Cracking of a Heavy Oil[D]. Medellin: Universidad Nacional de Colombia, 2015.

    19. [19]

      Murugan P, Mani T, Mahinpey N. Pyrolysis Kinetics of Athabasca Bitumen Using a TGA under the Influence of Reservoir Sand[J]. Can J Chem Eng, 2012,90(2):315-319. doi: 10.1002/cjce.v90.2

    20. [20]

      Kapadia P R, Kallos M S, Gates I D. A New Kinetic Model for Pyrolysis of Athabasca Bitumen[J]. Can J Chem Eng, 2013,91(5):889-901. doi: 10.1002/cjce.v91.5

    21. [21]

      Jia N, Moore R G, Mehta S A. Kinetic Modeling of Thermal Cracking Reactions[J]. Fuel, 2009,88(8):1376-1382. doi: 10.1016/j.fuel.2009.01.010

    22. [22]

      Kok M V, Gul K G. Thermal Characteristics and Kinetics of Crude Oils and SARA Fractions[J]. Thermochim Acta, 2013,569(40):66-70.  

    23. [23]

      Vyazovkin S, Chrissafis K, Lorenzo M L D. ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations[J]. Thermochim Acta, 2014,590(19):1-23.  

    24. [24]

      Pu W F, Yuan C D, Jin F Y. Low-Temperature Oxidation and Characterization of Heavy Oil via Thermal Analysis[J]. Energy Fuels, 2015,29(2):1151-1159.  

    25. [25]

      DENG Wen'an, LIU Chenguang, MU Baoquan. Petroleum Chenistry Experiment Handouts[M]. Dongying:China University of Petroleum Press, 1999:1-7(in Chinese).

    26. [26]

      Karimian M, Schaffie M, Fazaelipoor M H. Determination of Activation Energy as a Function of Conversion for the Oxidation of Heavy and Light Crude Oils in Relation to in Situ Combustion[J]. J Therm Anal Calorim, 2016,125(1):301-311.  

    27. [27]

      Yuan C D, Varfolomeev M A, Emelianov D A. Oxidation Behavior of Light Crude Oil and Its SARA Fractions Characterized by TG and DSC Techniques:Differences and Connections[J]. Energy Fuels, 2018,32(1):801-808.  

    28. [28]

      Barckholtz T A. Modeling the Negative Temperature Coefficient in the Low Temperature Oxidation of Light Alkanes[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem, 2003,48(2):518-519.  

    29. [29]

      ZHU Wenbing. The Experimental Study on Combustion Kinetics and Pyrolysis Thermal Analysis in in-situ combustion[D]. Wuhan: Huazhong University of Science and Technology, 2009(in Chinese). 

    30. [30]

      Bozzelli W J, Sheng C. Thermochemistry, Reaction Paths, and Kinetics on the Hydroperoxy-Ethyl Radical Reaction with O2:New Chain Branching Reactions in Hydrocarbon Oxidation[J]. J Phys Chem A, 2002,106(7):1113-1121. doi: 10.1021/jp013604d

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(5)
  • Abstract views(1647)
  • HTML views(345)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return