Citation: WANG Xuesong, CHEN Yinzhu, XIA Liquan, LI Yun, CHEN Liping, CHEN Wendan. Gelation Properties of Organic Salts as Low Relative Molecular Mass Gelators with Various Functional Groups in Raw Petroleum[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1462-1469. doi: 10.11944/j.issn.1000-0518.2018.12.180010 shu

Gelation Properties of Organic Salts as Low Relative Molecular Mass Gelators with Various Functional Groups in Raw Petroleum

  • Corresponding author: CHEN Wendan, chenwd928@163.com
  • Received Date: 12 January 2018
    Revised Date: 17 April 2018
    Accepted Date: 10 May 2018

    Fund Project: the National Natural Science Foundation of China 21706033Fujian Provincial Department of Education Project(Category A) JA15120Fujian Provincial Department of Education Project(Category A) JA15117Fujian Science Foundation Youth Innovation Project 2016J05114Fujian Science Foundation Youth Innovation Project 2016J05113Supported by the National Natural Science Foundation of China(No.21706033), Fujian Science Foundation Youth Innovation Project(No.2016J05113, No.2016J05114), Fujian Provincial Department of Education Project(Category A)(No.JA15117, No.JA15120)

Figures(5)

  • Low relative molecular mass gelators have attracted much attention due to their promising properties in oil spill recovery. However, designing a gelator is still challenging. In this paper, a series of organic salts was synthesized. Their structures and gelling properties were characterized by nuclear magnetic resonance spectroscopy(NMR), Fourier transform infrared spectrometer(FTIR), scanning electron microscope(SEM), vial inversion test. The results show that A3C3(A3-cinnamic acid, C3-Laurylamine) can readily gel in crude oil at room temperature. The critical gelation concentration is 6%(mass fraction). A3C3 self-assembles into dendritic three-dimensional entangled network. The formation of gel is due to the synergy between different supramolecular interactions. The increased π-π stacking interactions of the gelator made it easier to gelate. The gelators with phenyl groups are tending to gel in aromatic solvent. This gelling performance will contribute significantly toward the development of the design of organic soft materials.
  • 加载中
    1. [1]

      Han W H, Ju H J. A Study on the Prevention of Spill of Fuel Oils and Lubricating Oils for Sunken Ships[J]. J Korean Soc Mar Environ Saf, 2015,21(3):309-314. doi: 10.7837/kosomes.

    2. [2]

      Dou X Q, Zhang D, Feng C L. Research Progress and Prospect of Low Molecular Weight Gel[J]. Sci Technol Eng, 2011,12(7):1671-1815.

    3. [3]

      Basu K, Nandi N. Peptide-Based Ambidextrous Bifunctional Gelator:Applications in Oil Spill Recovery and Removal of Toxic Organic Dyes for Waste Water Management[J]. Interface Focus, 2017,7(6):6-11.  

    4. [4]

      Das U K, Trivedi D R, Adarsh N N. Supramolecular Synthons in Noncovalent Synthesis of a Class of Gelators Derived from Simple Organic Salts:Instant Gelation of Organic Fluids at Room Temperature via in Situ Synthesis of the Gelators[J]. J Org Chem, 2009,74(18):7111-7121. doi: 10.1021/jo901463k

    5. [5]

      Buerkle L E, Rowan S J. Supramolecular Gels Formed from Multi-component Low Molecular Weight Species[J]. Chem Soc Rev, 2012,41(18):6089-6102. doi: 10.1039/c2cs35106d

    6. [6]

      Yu X D, Chen L M, Zhang M M. Low-Molecular-Mass Gels Responding to Ultrasound and Mechanical Stress:Towards Self-Healing Materials[J]. Chem Soc Rev, 2014,43(15):5346-5371. doi: 10.1039/C4CS00066H

    7. [7]

      Darshak R, Trivedi A B, Parthasarathi D. An Easy to Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/Water Mixtures[J]. Chem Mater, 2003,21(15):3971-3973.  

    8. [8]

      Darshak R T, Parthasarathi D. Instant Gelation of Various Organic Fluids Including Petrol at Room Temperature by a New Class of Supramolecular Gelators[J]. Chem Mater, 2006,18(6):1470-1478. doi: 10.1021/cm0523586

    9. [9]

      Lu J R, Hu J, Liu C L. Water-induced Gel Formation of an Oleanlic Acid-Adenine Conjugate and the Effects of Uracil Derivative on the Gel Stability[J]. Soft Matter, 2012,37(8):9576-9580.  

    10. [10]

      Shen Y T, Li C S, Chang K C. Synthesis, Optical, and Mesomorphic Properties of Self-Assembled Organogels Featuring Phenylethynyl Framework with Elaborated Long-Chain Pyridine-2, 6-Dicarboxamides[J]. Langmuir, 2009,25(15):8714-8722. doi: 10.1021/la900003m

    11. [11]

      Amar B, Darshak R T, Parthasarathi D. New Series of Organogelators Derived from a Combinatorial Library of Primary Ammonium Monocarboxylate Salts[J]. Chem Mater, 2006,18(16):3795-3800. doi: 10.1021/cm0605015

    12. [12]

      Yang H K, Zhao H, Yang P R. How do Molecular Structures Affect Gelation Properties of Supramolecular Gels? Insights from Low-molecular-weight Gelators with Different Aromatic Cores and Alkyl Chain Lengths[J]. Colloids Surf A, 2017,535(44):242-250.  

    13. [13]

      Zhao C X, Wang H T, Bai B L. Organogels from Unsymmetrical p-Conjugated 1, 3, 4-Oxadiazole Derivatives[J]. New J Chem, 2013,37(5):1454-1460. doi: 10.1039/c3nj40648b

    14. [14]

      Lofman M, Koivukorpi J, Noponen V. Bile Acid Alkylamide Derivatives as Low Molecular Weight Organogelators:Systematic Gelation Studies and Qualitative Structural Analysis of the Systems[J]. J Colloid Interface Sci, 2011,360(112):633-644.  

  • 加载中
    1. [1]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    13. [13]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    14. [14]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    15. [15]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    16. [16]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(2)
  • Abstract views(881)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return