Citation: MA Li, XU Jingwei, YANG Chuanqi, LI Yunhui, MA Yuqin, ZHAO Yongxia. Effect of Polyhedral Oligomeric Silsesquioxanes-modified Gold Nanoparticles on 4-n-Pentyl-4'-ctanobiphenyl Liquid Crystal Properties[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1378-1383. doi: 10.11944/j.issn.1000-0518.2018.11.170450 shu

Effect of Polyhedral Oligomeric Silsesquioxanes-modified Gold Nanoparticles on 4-n-Pentyl-4'-ctanobiphenyl Liquid Crystal Properties

  • Corresponding author: MA Yuqin, myq9393@sina.com ZHAO Yongxia, zyx@ciac.ac.cn
  • Received Date: 12 December 2017
    Revised Date: 19 March 2018
    Accepted Date: 22 March 2018

    Fund Project: the Jilin Science and Technology Development Project 20170204038GXSupported by the Jilin Science and Technology Development Project(No. 20170204038GX)

Figures(5)

  • In order to effectively reduce the turn-on voltage of the liquid crystal device and low power consumption characteristics. Gold nanoparticles with an average particle diameter of about 5 nm were prepared by using polyhedral oligomeric silsesquioxanes (POSS) as the modification ligand and NaBH4 as the reductant to reduce the chloroauric acid. Gold nanoparticles were doped into nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) with different mass fractions to study its effect on the viscosity, the threshold voltage and the phase transition temperature. The results show that the viscosity and the threshold voltage of 5CB are decreased by doping with POSS modified gold nanoparticles. Moreover, the phase transition temperature range of 5CB is broadened by addition of the gold nanoparticles.
  • 加载中
    1. [1]

      GAO Hongjin. Liquid Crystal Chemistry[M]. Beijing:Qinghua University Press, 2011:4-11, 53-80(in Chinese).

    2. [2]

      Suzuki M, Furue H, Kobayash S. Polarizerless Nanomaterials Doped Guest-Host LCD Exhibiting High Luminance and Good Legbility[J]. Mol Cryst Liq Cryst, 2003,368:39-60.

    3. [3]

      Lee W, Shih Y. Effects of Carbon-nanotube Doping on the Performance of TN-LCD[J]. J Soc Inf Display, 2007,13(9):741-748.

    4. [4]

      Lee W, Wang C, Shih Y. Effects of Carbon Nanosolids on the Electro-optical Properties of a Twisted Nematic Liquid-crystal Host[J]. Appl Phys Lett, 2005,85(4):514-518.

    5. [5]

      Miyama T, Thisayukta J H. Fast Switching of Frequency Modulation Twisted Nematic Liquid Crystal Display Fabricated by Doping Nanoparticles and Its Mechanism[J]. Jpn J Appl Phys, 2004,43(5A):2580-2584. doi: 10.1143/JJAP.43.2580

    6. [6]

      Park S, Stroud D. Surface-enhanced Plasmon Splitting in a Liquid-crystal-coated Gold Nanoparticle[J]. Phy Rev Lett, 2015,94(21):2170-2180.  

    7. [7]

      Muller J, Sonniehsen C, Feldmann J. Electrically Controlled Light Scattering with Single Metal Nanoparticles[J]. Appl Phys Lett, 2012,81(1):170-175.  

    8. [8]

      Thisayukta J, Shiraki H, Sakai Y. Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Dopped with Silver Nanoparticles[J]. J Appl Phys, 2014,43(8):5429-5435.

    9. [9]

      Sano S, Miyama T, Kobayashi S. Enhancement of the Performance of LCDs by Doping the Nanoparticles of MgO:The Reduction of Operating Voltage and Response Times Particularl Delay Times and the Increase in the Optical Throughput[J]. J Disp:Technol, 2005,2(2):121-129.

    10. [10]

      Lin H, Jiang M, Wang L. Dopant Effects of Photoreactive ZnO Nanoparticles on Fast Response LC Materials in Optical Compensated Bend(OCB)mode Liquid Crystal Displays[J]. J Chinese Inst Chem Eng, 2010,33(7):1065-1080.

    11. [11]

      Glushchenko A, Cheon C, West J. Ferroelectric Particle in Liquid Crystals:Recent Frontiers[J]. Mol Cryst Liq Cryst, 2006,453:221-240.

    12. [12]

      Li F, West J, Glushchenko A. Ferroelectric Nanoparticle/Liquid-crystal Colloids for Display Aapplications[J]. J Soc Inf Display, 2009,14(6):521-529.

    13. [13]

      Ouskova E, Buchnev O. Dielectric Relaxation Spectroscopy of a Nematic Liquid Crystal Dopped with Ferroelectric Nanoparticles[J]. Liq Cryst, 2009,30(10):1230-1240.

    14. [14]

      Reshetnyak V, Shelestiuk S T. Fredericksz Transition Threshold in Nematic Liquid Crystals Filled with Ferroelectric Nanoparticles[J]. Mol Cryst Liq Cryst, 2008,454:202-210.

    15. [15]

      Li F, Buchnev O, West J. Orientational Coupling Amplification in Ferroelectric Nematic Colloids[J]. Phy Rev Lett, 2006,97(14):14780-14785.  

    16. [16]

      Glushchenko A, Cheon C, West J. Ferroelectric Particles in Liquid Crystals:Recent Frontier[J]. Mol Cryst Liq Cryst, 2009,30(10):1235-1239.

    17. [17]

      Li F, West J, Glushchenko A. Ferroelectric Nanoparticle/Liquid-crystal Colloids for Display Applications[J]. J Soc Inf Display, 2006,14(6):523-528. doi: 10.1889/1.2210802

    18. [18]

      Dolgov N, Yaroshehuk O. Electrooptic Properties of Colloidalsilica Filled Nematic[J]. Liq Cryst, 2009,29(4):586-598.

    19. [19]

      Suzuki M, Furue H, Kobayashi S. Polarizerless Nanomaterial Doped Guest-Host LCD Exhibiting High Luminance and Good Legibility[J]. Mol Cryst Liq Cryst, 2010,368:38-60.  

    20. [20]

      Muller J, Sonniehsen C, Feldmann J. Electrically Controlled Light Scattering with Signal Metal Nanoparticles[J]. Appl Phys Lett, 2008,81(1):170-175.

    21. [21]

      Kim J U, Cha S H, Shin K. Synthesis of Gold Nanoparticles from Gold(Ⅰ) Alkanethiolate Complexes with Supramolecular Structures Through Electron Beam Irradiation in TEM[J]. J Am Chem Soc, 2005,127(20):9962-9964.  

    22. [22]

      Ruhwandl R, Terentjev E. Long-range Forces and Aggregation of Colloid Particles in a Nematic Liquid Crystal[J]. Phys Rev E, 2007,55(3):2956-2962.

    23. [23]

      Kim B S, Mather P T. Amphiphilic Telechelics Incroporating Polyhedral Oligosilsesquioxane:Synthesis and Characterization[J]. Polym Phys, 2005,35(10):8378-8384.  

    24. [24]

      Xie X N, Gao X, Qi D. Chemically Linked AuNP-Alkane Network for Enhanced Photoemission and Field Emission[J]. ACS Nano, 2009,3(9):2722-2731. doi: 10.1021/nn9005335

    25. [25]

      GAO Hongjin. Liquid Crystal Chemistry[M]. Beijing:Qinghua University Press, 2011 4-11, 43-45(in Chinese).

    26. [26]

      Link S. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J Phys Chem B, 2009,103(21):1212-1217.  

    27. [27]

      Nelson D, Miyama T. Toward a Tetravalent Chemsity of Colloids[J]. Nano Lett, 2008,2(1):121-123.

    28. [28]

      Zhang T Y, Xu J, WANG Y. Lower Threshold Voltage and Weak Frequency Modulation Response of Liquid Crystal Display Doped with Cds Nanoparticles[J]. Chinese J Electron Devi, 2008,31(1):97-99.  

    29. [29]

      Schadt M. The Twisted Nematic Effect:Liquid Crystal Displays and Liquid Crystal Materials[J]. Mol Cryst Liq Cryst, 1998,165:407-425.

    30. [30]

      Nelson D, Miyama T. Toward a Tetravalent Chemsity of Colloids[J]. Nano Lett, 2008,2(1):125-129.  

    31. [31]

      Xu J, Okada H, Onnagawa H. Liquid Crystal System as Molecular Machinery:Investigatin of Dynamic Impedance Matching Between Molecular Core and Terminal Group Using Rotor Bearing Mode[J]. Jpn J Appl Phys, 2000,3(4):1802-1809.

  • 加载中
    1. [1]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    2. [2]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    5. [5]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    13. [13]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    14. [14]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    15. [15]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(5)
  • Abstract views(1077)
  • HTML views(574)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return