Citation: XU Kunlun, CAO Zubin, QIAO Haiyan, HAN Dongyun, SHI Weiwei. CuI/2, 2'-Bipyridine/2, 2, 6, 6-Tetramethylpiperidinooxy Catalytic Oxidation Process of Alcohol to Nitrile[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1335-1341. doi: 10.11944/j.issn.1000-0518.2018.11.170446 shu

CuI/2, 2'-Bipyridine/2, 2, 6, 6-Tetramethylpiperidinooxy Catalytic Oxidation Process of Alcohol to Nitrile

  • Corresponding author: CAO Zubin, caozubin974@163.com
  • Received Date: 11 December 2017
    Revised Date: 25 January 2018
    Accepted Date: 9 February 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.21276253), Research Foundation of Liaoning Shihua University(No.2016XJJ-017)Research Foundation of Liaoning Shihua University 2016XJJ-017the National Natural Science Foundation of China 21276253

Figures(4)

  • CuI/Bipy (2, 2'-bipyridine)/TEMPO (2, 2, 6, 6-Tetramethylpiperidinooxy) catalytic oxidation process was optimized for nitriles synthesis using alcohols as starting material with aqueous ammonia as nitrogen source and molecular oxygen as the oxidant in a pressurized reactor. The effect of copper salts, catalyst loading, solvent, reaction temperature and reaction time were studied using benzyl alcohol as a model substrate. It is shown that low catalyst loading (1% molar fraction for aromatic alcohols, 5% molar fraction for aliphatic alcohols) and short reaction time (8 hours) are required for oxidizing both aromatic and aliphatic alcohols to their corresponding nitriles over 90% conversion rate and 90% yield under 40×105 Pa presure of O2 (8% volume fraction)-N2 gas mixture at 120℃.
  • 加载中
    1. [1]

      Lee G A, Freedman H H. Phase Transfer Catalyzed Oxidations of Alcohols and Amines by Aqueous Hypochlorite[J]. Tetrahedron Lett, 1976,17(20):1641-1644. doi: 10.1016/S0040-4039(00)92911-3

    2. [2]

      Miller J S, Manson J L. Designer Magnets Containing Cyanides and Nitriles[J]. Acc Chem Res, 2001,34(7):563-570. doi: 10.1021/ar0000354

    3. [3]

      Smith M B, March J. March's Advanced Organic Chemistry:Reactions, Mechanisms, and Structure, Sixth Edition[J]. Molecules, 2006,6(12):1064-1065.  

    4. [4]

      Fleming F F, Yao L, Ravikumar P C. Nitrile-containing Pharmaceuticals:Efficacious Roles of the Nitrile Pharmacophore[J]. J Med Chem, 2010,53(22):7902-7917. doi: 10.1021/jm100762r

    5. [5]

      Trumm S, Wipff G, Geist A. Optimising BTP Ligands by Tuning Their Basicity[J]. Radiochim Acta, 2011,99(1):13-16. doi: 10.1524/ract.2011.1794

    6. [6]

      Tamilselvan P, Basavaraju Y B, Sampathkumar E. Cobalt(Ⅱ) Catalyzed Dehydration of Aldoximes:A Highly Efficient Practical Procedure for the Synthesis of Nitriles[J]. Catal Commun, 2009,10(5):716-719. doi: 10.1016/j.catcom.2008.11.025

    7. [7]

      Ghorbani-Vaghei R, Shiri L, Ghorbani-Choghamarani A. An Efficient, Rapid and Facile Procedure for Conversion of Aldoximes to Nitriles Using Triphenylphosphine and N-Halo Sulfonamides[J]. Chinese Chem Lett, 2013,24(12):1123-1126. doi: 10.1016/j.cclet.2013.07.020

    8. [8]

      Tang X, An J, Denton R M. A Procedure for Appel Halogenations and Dehydrations Using a Polystyrene Supported Phosphine Oxide[J]. Tetrahedron Lett, 2014,55(4):799-802. doi: 10.1016/j.tetlet.2013.11.098

    9. [9]

      Shu Z, Ye Y, Deng Y. Palladium(Ⅱ)-Catalyzed Direct Conversion of Methyl Arenes into Aromatic Nitriles[J]. Angew Chem Int Ed, 2013,52(40):10573-10576. doi: 10.1002/anie.201305731

    10. [10]

      Jasem Y A, Barkhad M, Khazali M A. Two Ways of Preparing Benzonitriles Using BrCCl3-PPh3 as the Reagent[J]. J Chem Res, 2014,38(2):80-84. doi: 10.3184/174751914X13891131118347

    11. [11]

      Biondini D, Brinchi L, Germani R. Dehydrogenation of Amines to Nitriles in Aqueous Micelles[J]. Eur J Org Chem, 2005,2005(14):3060-3063. doi: 10.1002/(ISSN)1099-0690

    12. [12]

      Kim J, Chang S. A New Combined Source of "CN" from N, N-Dimethylformamide and Ammonia in the Palladium-Catalyzed Cyanation of Aryl C-H Bonds[J]. J Am Chem Soc, 2010,132(30):10272-10274. doi: 10.1021/ja104917t

    13. [13]

      Lamani M, Prabhu K R. An Efficient Oxidation of Primary Azides Catalyzed by Copper Iodide:A Convenient Method for the Synthesis of Nitriles[J]. Angew Chem Int Ed, 2010,49(37):6622-6625. doi: 10.1002/anie.201002635

    14. [14]

      Rokade B V, Malekar S K, Prabhu K R. A Novel Oxidative Transformation of Alcohols to Nitriles:An Efficient Utility of Azides as a Nitrogen Source[J]. Chem Commun, 2012,48(44):5506-5508. doi: 10.1039/c2cc31256e

    15. [15]

      Oishi T, Yamaguchi K, Mizuno N. Catalytic Oxidative Synthesis of Nitriles Directly from Primary Alcohols and Ammonia[J]. Angew Chem Int Ed, 2009,48(34):6286-6288. doi: 10.1002/anie.200900418

    16. [16]

      Yamaguchi K, He J, Oishi T. The "Borrowing Hydrogen Strategy" by Supported Ruthenium Hydroxide Catalysts:Synthetic Scope of Symmetrically and Unsymmetrically Substituted Amines[J]. Chem-Eur J, 2010,16(24):7199-7207. doi: 10.1002/chem.201000149

    17. [17]

      Nie R, Shi J, Xia S. MnO2/Graphene Oxide:A Highly Active Catalyst for Amide Synthesis from Alcohols and Ammonia in Aqueous Media[J]. J Mater Chem, 2012,22(35):18115-18118. doi: 10.1039/c2jm34652d

    18. [18]

      Ishida T, Watanabe H, Takei T. Metal Oxide-catalyzed Ammoxidation of Alcohols to Nitriles and Promotion Effect of Gold Nanoparticles for One-Pot Amide Synthesis[J]. Appl Catal, A, 2012,425:85-90.  

    19. [19]

      Dornan L M, Cao Q, Flanagan J C A. Copper/TEMPO Catalysed Synthesis of Nitriles from Aldehydes or Alcohols Using Aqueous Ammonia and with Air as the Oxidant[J]. Chem Commun, 2013,49(54):6030-6032. doi: 10.1039/c3cc42231c

    20. [20]

      Tao C, Liu F, Zhu Y. Copper-catalyzed Aerobic Oxidative Synthesis of Aryl Nitriles from Benzylic Alcohols and Aqueous Ammonia[J]. Org Biomol Chem, 2013,11(20):3349-3354. doi: 10.1039/c3ob00002h

    21. [21]

      Dighe S U, Chowdhury D, Batra S. Iron Nitrate/TEMPO:A Superior Homogeneous Catalyst for Oxidation of Primary Alcohols to Nitriles in Air[J]. Adv Synth Catal, 2014,356(18):3892-3896. doi: 10.1002/adsc.v356.18

    22. [22]

      Yin W, Wang C, Huang Y. Highly Practical Synthesis of Nitriles and Heterocycles from Alcohols Under Mild Conditions by Aerobic Double Dehydrogenative Catalysis[J]. Org Lett, 2013,15(8):1850-1853. doi: 10.1021/ol400459y

    23. [23]

      Zhang Y, Huang R, Gao B. Solvent-Free Aerobic Oxidation of Alcohols to Nitriles Catalyzed by Copper Iodide in Combination with a Quaternary Ammonium Modified TEMPO[J]. Catal Lett, 2016,146(1):220-228. doi: 10.1007/s10562-015-1634-0

    24. [24]

      Jagadeesh R V, Junge H, Beller M. Green Synthesis of Nitriles Using Non-Noble Metal Oxides-based Nanocatalysts[J]. Nat Commun, 2014,5:4123-4130. doi: 10.1038/ncomms5123

    25. [25]

      Osterberg P M, Niemeier J K, Welch C J. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry[J]. Org Process Res Dev, 2014,19(11):1537-1543.

    26. [26]

      Rogan L, Hughes N L, Cao Q. Copper(Ⅰ)/ketoABNO Catalysed Aerobic Alcohol Oxidation[J]. Catal Sci Technol, 2014,4(6):1720-1725. doi: 10.1039/C4CY00219A

    27. [27]

      Hoover J M, Ryland B L, Stahl S S. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation:Mechanistic Assessment of Different Catalyst Systems[J]. ACS Catal, 2013,3(11):2599-2605. doi: 10.1021/cs400689a

    28. [28]

      Zhang G, Zhang G, Lei J. Aerobic Alcohol Ammoxidation Catalyzed by Copper(Ⅰ)/Amino Acid:A Scalable Protocol to Nitriles[J]. Chem Res Chinese Univ, 2016,32(4):586-593. doi: 10.1007/s40242-016-6067-9

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(2)
  • Abstract views(715)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return