Citation: ZHAO Liping, TAO Keyu, WANG Hongyu, QI Li. Sodium Titanate Nanotube-Carbon Composite as Negative Electrode Materials for Na-Ion Supercapattery[J]. Chinese Journal of Applied Chemistry, ;2018, 35(10): 1264-1270. doi: 10.11944/j.issn.1000-0518.2018.10.170454 shu

Sodium Titanate Nanotube-Carbon Composite as Negative Electrode Materials for Na-Ion Supercapattery

  • Corresponding author: QI Li, qil@ciac.ac.cn
  • Received Date: 15 December 2017
    Revised Date: 24 January 2018
    Accepted Date: 6 March 2018

    Fund Project: the National Natural Science Foundation of China 21571173Talent Scientific Research Fund of LSHU 2016XJJ-020Supported by the National Natural Science Foundation of China(No.21571173), Talent Scientific Research Fund of LSHU(No.2016XJJ-020)

Figures(9)

  • Sodium titanate nanotube-carbon(STN-C) composites were prepared by a hydrothermal method using TiO2, NaOH solution and glucose as starting materials. X-ray diffraction(XRD) and transmission electron microscopy(TEM) were employed to characterize its crystal morphology. N2 adsorption-desorption and thermogravimetry(TG) methods were applied to confirm its pore structure and mass ratio of carbon. STN-C was adopted as negative electrode materials for the asymmetric electrochemical supercapatteries of STN-C/graphite using Na+-based organic electrolytes. This type of supercapatteries possess the working voltage as high as 3.5 V. The charge storage mechanism at the negative electrode was studied and the effect of mass ratio of graphite/STN-C was investigated. The electrochemical performance tests reveal that the supercapatteries have relatively high energy density and power density, i.e., 72 Wh/Kg and 1256 W/Kg, respectively. The supercapatteries also show high cycle stability, displaying a 100% capacity retention after 1000 cycles at a current density of 0.17 A/g.
  • 加载中
    1. [1]

      Tai Z X, Chandrasekar M S, Chou S L. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries[J]. Adv Mater, 2017,29(34)1700605. doi: 10.1002/adma.v29.34

    2. [2]

      Wang J L, Xu T T, Huang X. Recent Progress of Silicon Composites as Anode Materials for Secondary Batteries[J]. RSC Adv, 2016,6(90):87778-87790. doi: 10.1039/C6RA08971B

    3. [3]

      Wang Z Y, He W, Zhang X D. Multilevel Structures of Li3V2(PO4)3/Phosphorus-Doped Carbon Nanocomposites Derived from Hybrid V-MOFs for Long-Life and Cheap Lithium Ion Battery Cathodes[J]. J Power Sources, 2017,366(10):9-17.  

    4. [4]

      Zhao L P, Wang H Y, Qi L. MoS2 Being Used as Negative Electrode for Asymmetric Electrochemical Capacitors[J]. J Inorg Mater, 2013,28(8):831-835. doi: 10.3724/SP.J.1077.2013.12630

    5. [5]

      Xu J T, Javeed M, Dou Y H. 2D Frameworks of C2N and C3N as New Anode Materials for Lithium-Ion Batteries[J]. Adv Mater, 2017,29(34)1702007. doi: 10.1002/adma.201702007

    6. [6]

      Feng R, Wang L W, Lu Z Y. Carbon Nanocages Supported LiFePO4 Nanoparticles as High-Performance Cathode for Lithium Ion Batteries[J]. Acta Chim Sin, 2014,72(6):653-657. doi: 10.6023/A14030227

    7. [7]

      Lin N, Jia Z, Wang Z H. Understanding the Crack Formation of Graphite Particles in Cycled Commercial Lithium-Ion Batteries by Focused Ion Beam-Scanning Electron Microscopy[J]. J Power Sources, 2017,365(10):235-239.  

    8. [8]

      Zhu J H, Yang J, Zhou J L. A Stable Organic-Inorganic Hybrid Layer Protected Lithium Metal Anode for Long-Cycle Lithium-Oxygen Batteries[J]. J Power Sources, 2017,366(10):265-269.

    9. [9]

      Abada S, Marlair G, Lecocq A. Safety Focused Modeling of Lithium-Ion Batteries:A Review[J]. J Power Sources, 2016,306(2):178-192.  

    10. [10]

      Berecibar M, Gandiaga I, Villarreal I. Critical Review of State of Health Estimation Methods of Li-Ion Batteries for Real Applications[J]. Renew Sustainable Energy Rev, 2016,56(4):572-587.

    11. [11]

      WANG Hong, ZHANG Weide. Surface-Coating Modification of Li-Rich Cathode Materials Li[Li0.2Mn0.4Fe0.4]O2[J]. Chinese J Appl Chem, 2013,30(6):705-709.  

    12. [12]

      TANG Anping, LIU Lihua, XU Guorong. Progress in Borate Electrode Materials for Lithium Ion Batteries[J]. Chinese J Appl Chem, 2012,29(11):1221-1230.  

    13. [13]

      YU Zhongbao, ZHANG Shengli, YANG Shuting. Effects of Sintering Temperature on the Structure and Electrochemical Property of LiCoO2[J]. Chinese J Appl Chem, 2012,16(4):102-104.  

    14. [14]

      Kim S W, Seo D H, Ma X H. Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries[J]. Adv Energy Mater, 2012,2(7):710-721. doi: 10.1002/aenm.201200026

    15. [15]

      Wang C C, Wang L B, Li F J. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes[J]. Adv Mater, 2017,29(35)1702212. doi: 10.1002/adma.201702212

    16. [16]

      Guo J Z, Wang P F, Wu X L. High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries:In Situ XRD Study and Superior Full-Cell Performance[J]. Adv Mater, 2017,29(33)1701968. doi: 10.1002/adma.v29.33

    17. [17]

      Palomares V, Serras P, Villaluenga I. Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems[J]. Energy Environ Sci, 2012,5(3):5884-5901. doi: 10.1039/c2ee02781j

    18. [18]

      Yabuuchi N, Kajiyama M, Iwatate J. P2-type Nax[Fe1/2Mn1/2]O2 Made from Earth-Abundant Elements for Rechargeable Na Batteries[J]. Nat Mater, 2012,11(4):512-517.  

    19. [19]

      Komaba S, Yabuuchi N, Nakayama T. Study on the Reversible Electrode Reaction of Na1-xNi0.5Mn0.5O2 for a Rechargeable Sodium-Ion Battery[J]. Inorg Chem, 2012,51(11):6211-6220. doi: 10.1021/ic300357d

    20. [20]

      Lu Z, Dahn J R. In Situ X-Ray Diffraction Study of P2-Na2/3[Ni1/3Mn2/3]O2[J]. J Electrochem Soc, 2001,148(11).

    21. [21]

      ZHAO Liping, CAI Xingnan, WANG Hongyu. Molybdenum Trioxide-A New Type Negative Electrode Materials for Electric Energy Storage Devices Using Na+-Based Organic Electrolytes[J]. Chinese J Appl Chem, 2017,34(3):262-268.  

    22. [22]

      Komaba S, Takei C, Nakayama T. Electrochemical Intercalation Activity of Layered NaCrO2 vs. LiCrO2[J]. Electrochem Commun, 2010,12(3):355-358. doi: 10.1016/j.elecom.2009.12.033

    23. [23]

      ZHAO Liping, QI Li, WANG Hongyu. MoO3/Activated Carbon Sodium-ion Electrochemical Capacitors[J]. Chinese J Appl Chem, 2013,30(10):1189-1193.  

    24. [24]

      Abouimrane A, Weng W, Eltayeb H. Sodium Insertion in Carboxylate Based Materials and Their Application in 3.6 V Full Sodium Cells[J]. Energy Environ Sci, 2012,5(11):9632-9638. doi: 10.1039/c2ee22864e

    25. [25]

      Komaba S, Murata W, Ishikawa T. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Adv Funct Mater, 2011,21(20):3859-3867. doi: 10.1002/adfm.v21.20

    26. [26]

      Zhao L P, Qi L, Wang H Y. MoS2 C/Graphite, An Electric Energy Storage Device Using Na+-Based Organic Electrolytes[J]. RSC Adv, 2015,5(1):15431-15437.

    27. [27]

      Stevens D A, Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J]. J Electrochem Soc, 2000,147(4):1271-1273. doi: 10.1149/1.1393348

    28. [28]

      Stevens D A, Dahn J R. An In Situ Small-Angle X-ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material Within an Operating Electrochemical Cell[J]. J Electrochem Soc, 2000,147(12):4428-4431. doi: 10.1149/1.1394081

    29. [29]

      Alcántara R, Lavela P, Ortiz G F. Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries[J]. Electrochem Solid State Lett, 2005,8(4):A222-A225.

    30. [30]

      Senguttuvan P, Rousse G, Seznec V. Na2Ti3O7:Lowest Voltage ever Reported Oxide Insertion Electrode for Sodium Ion Batteries[J]. Chem Mater, 2011,23(18):4109-4111. doi: 10.1021/cm202076g

    31. [31]

      Zhao L P, Qi L, Wang H Y. Sodium Titanate Nanotube/Graphite, An Electric Energy Storage Device Using Na-Based Organic Electrolytes[J]. J Power Sources, 2013,242(6):597-603.  

    32. [32]

      Jr E M, de Abreu M A S, Pravia O R C. A Dtudy On the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content[J]. Solid State Sci, 2006,8(8):888-900. doi: 10.1016/j.solidstatesciences.2006.02.039

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(2)
  • Abstract views(897)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return