Citation: LI Yueqing, WU Qianqian, SONG Qilin, CAO Lei, QIN Qiuyan, XU Yan, ZHAO Weijie. Synthesis and Anti-platelet Aggregation Assay of Cinnamoyl-tyramine Amide Analogues[J]. Chinese Journal of Applied Chemistry, ;2018, 35(10): 1174-1183. doi: 10.11944/j.issn.1000-0518.2018.10.170365 shu

Synthesis and Anti-platelet Aggregation Assay of Cinnamoyl-tyramine Amide Analogues

  • Corresponding author: ZHAO Weijie, zyzhao@dlut.edu.cn
  • Received Date: 13 October 2017
    Revised Date: 13 November 2017
    Accepted Date: 18 December 2017

    Fund Project: the State Key Development Program for Basic Research of China 2009CB918501Supported by the State Key Development Program for Basic Research of China(No.2009CB918501)

Figures(4)

  • In order to explore the influence of methoxy substitution in benzene ring, methylation of tyramine hydroxyl and cinnamoyl-tyramine amines, on anti-platelet aggregation activities analogues, cinnamoyl-tyramine amide analogues were synthesized via condensation and methylation with eight benzaldehyde derivatives as raw materials. The structures of synthesized compounds were characterized by nuclear magnetic resonance spectroscopy(NMR), mass spectrometry(MS) and single crystal diffraction. Based on variable-temperature NMR, rotational isomerization based on amide C-N bond was studied for compounds 4a~4h. Their anti-platelet aggregation activities were tested in vitro and assayed by Born test. The results show that nine analogues are more active than podocarpamide. Specifically, compounds 2c, 4c and 4f show inhibition rates of 50.03%, 60.87% and 53.33%, respectively, at 200 μmol/L. The preliminary structure-activity relationship studies on these compounds indicate that 4-methoxy substituent is the most favorable for anti-ADP(adenosine-diphosphate) induced platelet aggregation, and methylated hydroxyl group on ring B and the amide nitrogen also increase the activities to some extent.
  • 加载中
    1. [1]

      Ng K M, Gray A I, Waterman P G. Benzophenanthridine Alkaloids from the Stem Bark of a Zanthoxylum Species[J]. Phytochemistry, 1987,26(12):3251-3254. doi: 10.1016/S0031-9422(00)82481-4

    2. [2]

      REN Lijuan, XIE Fengzhi, XIE Jingxi. Chemical Structure of Podocarpamide Isolated from Zanthoxylum Podocarpum Hemsl[J]. Acta Pharm Sin, 1989,24(1):67-70.  

    3. [3]

      Delle Monache F, Benedetto R, Souza M A M. Esenbeckia leiocarpa:Ⅱa Further Components[J]. Gazz Chim Ital, 1990,120(6):387-389.

    4. [4]

      Adesina S K, Olugbade T A, Bergenthal D D. Extractives from Zanthoxylum lemairie Root and Stem[J]. Pharmazie, 1997,52(9):720-724.

    5. [5]

      Kalia N K, Singh B, Sood R P. A New Amide from Zanthoxylum armatum[J]. J Nat Prod, 1999,62(2):311-312. doi: 10.1021/np980224j

    6. [6]

      Cheng M J, Wu C C, Tsai I L. Chemical and Antiplatelet Constituents from the Stem of Zanthoxylum beecheyanum[J]. J Chinese Chem Soc, 2004,51(5A):1065-1072. doi: 10.1002/jccs.v51.5A

    7. [7]

      Chen Y C, Chen J J, Chang Y L. A New Aristolactam Alkaloid and Anti-Platelet Aggregation Constituents from Piper taiwanense[J]. Planta Med, 2004,70(2):174-177. doi: 10.1055/s-2004-815497

    8. [8]

      Wu M C, Peng C F, Chen I S. Antitubercular Chromones and Flavonoids from Pisonia aculeata[J]. J Nat Prod, 2011,74(5):976-982. doi: 10.1021/np1008575

    9. [9]

      CHEN Lihua, XIE Lan, XIE Jingxi. Chemical Identification of Structure of Podocarpamide by Synthesis[J]. Acta Pharm Sin, 1990,25(12):926-928.

    10. [10]

      Woo N T, Jin S Y, Cho D J. Synthesis of Substituted Cinnamoyl-Tyramine Amides and Their Platelet Aggregation Inhibitory Activities[J]. Arch Pharm Res, 1997,20(1):80-84. doi: 10.1007/BF02974047

    11. [11]

      Park J B. Bioavailability of Alfrutamide and Caffedymine and Their P-Selectin Suppression and Platelet-Leukocyte Aggregation Mechanisms in Mice[J]. J Nutr, 2016,146(2):437S-443S. doi: 10.3945/jn.114.202473

    12. [12]

      Chen G Z, Zhang Y L, Liu X. Discovery of a New Inhibitor of Myeloid Differentiation 2 from Cinnamamide Derivatives with Anti-Inflammatory Activity in Sepsis and Acute Lung Injury[J]. J Med Chem, 2016,59(6):2436-2451. doi: 10.1021/acs.jmedchem.5b01574

    13. [13]

      Sadeghi M, Zolfaghari B, Senatore M. Antifungal Cinnamic Acid Derivatives from Persian Leek(Allium ampeloprasum Subsp. Persium)[J]. Phytochem Lett, 2013,6(3):360-363. doi: 10.1016/j.phytol.2013.04.007

    14. [14]

      Georgiev L, Najdenski H, Ninova M. Radical Scavenging and Antimicrobial Activities of Cinnamoyl Amides of Biogenic Monoamines[J]. Riv Ital Sostanze Gr, 2012,89(2):91-102.  

    15. [15]

      Georgiev L, Chochkova M, Totseva I. Anti-tyrosinase, Antioxidant and Antimicrobial Activities of Hydroxycinnamoylamides[J]. Med Chem Res, 2013,22(9):4173-4182. doi: 10.1007/s00044-012-0419-x

    16. [16]

      Dothager R S, Putt K S, Allen B J. Synthesis and Identification of Small Molecules that Potently Induce Apoptosis in Melanoma Cells Through G1 Cell Cycle Arrest[J]. J Am Chem Soc, 2015,127(24):8686-8696.  

    17. [17]

      Nesterenko V, Putt K S, Hergenrother P J. Identification from a Combinatorial Library of a Small Molecule That Selectively Induces Apoptosis in Cancer Cells[J]. J Am Chem Soc, 2003,125(48):14672-14673. doi: 10.1021/ja038043d

    18. [18]

      WEI Dongqing, MA Yukun. Preparation of Propenamide Derivatives Useful in Prevention and Treatment of Alzheimer's Disease: CN, 201110439656. X[P], 2016-09-07(in Chinese).

    19. [19]

      WU Jinlong, LIU Yaunxin, DAI Weiming. The Synthesis of 3-Aryl-2-Acrylamide: CN, 200810061481. 1[P], 2010-06-23(in Chinese).

    20. [20]

      Kim S H, Lim C M, Kim S M, et al. Piper Amide-Based Compound as Bombesin Receptor Subtype 3: Korea, WO2014/129874[P], 2014-02-25.

    21. [21]

      Zhang P, Hub H R, Bian S H. Design, Synthesis and Biological Evaluation of Benzothiazepinones(BTZs) as Novel Non-ATP Competitive Inhibitors of Glycogen Synthase Kinase-3b(GSK-3b)[J]. Eur J Med Chem, 2013,61:95-103. doi: 10.1016/j.ejmech.2012.09.021

    22. [22]

      Alexaner B, Martin E. Synthesis of Enamides from Aldehydes and Amides[J]. Tetrahedron, 2004,60:6665-6677. doi: 10.1016/j.tet.2004.05.082

    23. [23]

      Cheng X H, Liu X Y, Xu W F. Design, Synthesis, and Biological Activities of Novel Ligustrazine Derivatives[J]. Bioorg Med Chem, 2007,15:3315-3320. doi: 10.1016/j.bmc.2007.03.033

    24. [24]

      Campbell J L E, Johnson K E, Torkelson J R. Infrared and Variable-Temperature Investigations of Ambient-Temperature Ionic Liquids Prepared by Reaction of HCl with 1-Ethyl-3-methyl-1H-imidazolium Chloride[J]. Inorg Chem, 2002,33(15):3340-3345.

    25. [25]

      Gupta B D, Vijaikanth A V, Singh V. Synthesis, Characterization, and Variable-Temperature 1H NMRBehavior of Organo-Bridged Dicobaloximes[J]. Organometallics, 2004,23(9):2069-2079. doi: 10.1021/om034273p

    26. [26]

      Lewis K C, Maxwell A R, Mclean S. Room-temperature(1H, 13C) and Variable-Temperature(1H) NMR Studies on Spinosin[J]. Magn Reson Chem, 2000,38(9):771-774. doi: 10.1002/(ISSN)1097-458X

    27. [27]

      Qiao R R, Sun J, Yang C H. Isomerization of the Amide Bond in Piperidin Amides Studied by Variable-temperature NMR Spectroscopy[J]. Chinese J Magn Reson, 2008,25(3):307-314.

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    3. [3]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    7. [7]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    8. [8]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    9. [9]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    10. [10]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    20. [20]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

Metrics
  • PDF Downloads(0)
  • Abstract views(319)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return