Citation: WU Xiangkun, ZHAN Qiushe, ZHANG Lan, ZHANG Suojiang. Progress on Microstructural Optimization and Controllable Preparation Technology for Lithium Ion Battery Electrodes[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1076-1092. doi: 10.11944/j.issn.1000-0518.2018.09.180165 shu

Progress on Microstructural Optimization and Controllable Preparation Technology for Lithium Ion Battery Electrodes

  • Corresponding author: ZHANG Suojiang, sjzhang@ipe.ac.cn
  • Received Date: 9 May 2018
    Revised Date: 10 May 2018
    Accepted Date: 15 May 2018

    Fund Project: Supported by the National Key R & D Program of China(No.2016YFB0100100), the National Natural Science Foundation of China(No.21706262), the Beijing Natural Science Foundation(No.L172045), the Science and Technology Major Project of Zhengzhou(No.174PZDZX570)the National Natural Science Foundation of China 21706262the Science and Technology Major Project of Zhengzhou 174PZDZX570the Beijing Natural Science Foundation L172045the National Key R & D Program of China 2016YFB0100100

Figures(13)

  • Lithium-ion batteries are the most widely used energy storage device, and currently, the rapid development of economy has put forward higher requirements on their performances. Electrode microstructure has significant influence on the battery performance, therefore, elaborate microstructure design and controllable preparation thereof is becoming one of the hot topics in this field. In this paper, according to the latest development trend of lithium ion batteries, the basic electrochemical process and the microstructural characterization technology of the lithium ion battery electrode are enumerated. Then the design and optimization of the electrode in recent years are summarized, and the key microstructural features are discussed. Based on an ideal electrode structure, the latest development in controllable electrode preparation technology is reviewed.
  • 加载中
    1. [1]

      Bitsch B, Gallasch T, Schroeder M. Capillary Suspensions as Beneficial Formulation Concept for High Energy Density Li-Ion Battery Electrodes[J]. J Power Sources, 2016,328:114-123. doi: 10.1016/j.jpowsour.2016.07.102

    2. [2]

      Lu W, Jansen A, Dees D. High-Energy Electrode Investigation for Plug-In Hybrid Electric Vehicles[J]. J Power Sources, 2011,196(3):1537-1540. doi: 10.1016/j.jpowsour.2010.08.117

    3. [3]

      Singh M, Kaiser J, Hahn H. Thick Electrodes for High Energy Lithium Ion Batteries[J]. J Electrochem Soc, 2015,162(7):A1196-A1201. doi: 10.1149/2.0401507jes

    4. [4]

      Singh M, Kaiser J, Hahn H. A Systematic Study of Thick Electrodes for High Energy Lithium Ion Batteries[J]. J Electroanal Chem, 2016,782:245-249. doi: 10.1016/j.jelechem.2016.10.040

    5. [5]

      Feng K, Li M, Liu W. Silicon-Based Anodes for Lithium-Ion Batteries:From Fundamentals to Practical Applications[J]. Small, 2018,14(8)1702737. doi: 10.1002/smll.201702737

    6. [6]

      Smekens J, Gopalakrishnan R, Van den Steen N. Influence of Electrode Density on the Performance of Li-Ion Batteries:Experimental and Simulation Results[J]. Energies, 2016,9(2)104. doi: 10.3390/en9020104

    7. [7]

      Liu H, Foster J M, Gully A. Three-Dimensional Investigation of Cycling-Induced Microstructural Changes in Lithium-Ion Battery Cathodes Using Focused Ion Beam/Scanning Electron Microscopy[J]. J Power Sources, 2016,306:300-308. doi: 10.1016/j.jpowsour.2015.11.108

    8. [8]

      Ender M, Joos J, Carraro T. Three-Dimensional Reconstruction of a Composite Cathode for Lithium-Ion Cells[J]. Electrochem Commun, 2011,13(2):166-168. doi: 10.1016/j.elecom.2010.12.004

    9. [9]

      Liu Z, Verhallen T W, Singh D P. Relating the 3D Electrode Morphology to Li-Ion Battery Performance; A Case for LiFePO4[J]. J Power Sources, 2016,324:358-367. doi: 10.1016/j.jpowsour.2016.05.097

    10. [10]

      Liu Z, Chen-Wiegart Y K, Wang J. Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography[J]. Microsc Microanal, 2016,22(1):140-148. doi: 10.1017/S1431927615015640

    11. [11]

      Hutzenlaub T, Thiele S, Paust N. Three-Dimensional Electrochemical Li-Ion Battery Modelling Featuring a Focused Ion-Beam/Scanning Electron Microscopy Based Three-Phase Reconstruction of a LiCoO2 Cathode[J]. Electrochim Acta, 2014,115:131-139. doi: 10.1016/j.electacta.2013.10.103

    12. [12]

      Hutzenlaub T, Asthana A, Becker J. FIB/SEM-based Calculation of Tortuosity in a Porous LiCoO2 Cathode for a Li-Ion Battery[J]. Electrochem Commun, 2013,27:77-80. doi: 10.1016/j.elecom.2012.11.006

    13. [13]

      Moroni R, B rner M, Zielke L. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode[J]. Sci Rep-UK, 2016,610309.  

    14. [14]

      Ebner M, Geldmacher F, Marone F. X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes[J]. Adv Energy Mater, 2013,3(7):845-850. doi: 10.1002/aenm.v3.7

    15. [15]

      Chen-Wiegart Y K, Liu Z, Faber K T. 3D Analysis of a LiCoO2-Li(Ni1/3Mn1/3Co1/3)O2 Li-Ion Battery Positive Electrode Using X-Ray Nano-Tomography[J]. Electrochem Commun, 2013,28:127-130. doi: 10.1016/j.elecom.2012.12.021

    16. [16]

      Babu S K, Mohamed A I, Whitacre J F. Multiple Imaging Mode X-ray Computed Tomography for Distinguishing Active and Inactive Phases in Lithium-Ion Battery Cathodes[J]. J Power Sources, 2015,283:314-319. doi: 10.1016/j.jpowsour.2015.02.086

    17. [17]

      Cooper S J, Eastwood D S, Gelb J. Image Based Modelling of Microstructural Heterogeneity in LiFePO4 Electrodes for Li-Ion Batteries[J]. J Power Sources, 2014,247:1033-1039. doi: 10.1016/j.jpowsour.2013.04.156

    18. [18]

      Tariq F, Yufit V, Kishimoto M. Three-Dimensional High Resolution X-ray Imaging and Quantification of Lithium Ion Battery Mesocarbon Microbead Anodes[J]. J Power Sources, 2014,248:1014-1020. doi: 10.1016/j.jpowsour.2013.08.147

    19. [19]

      Nelson G J, Ausderau L J, Shin S Y. Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-Ray Nanotomography[J]. J Electrochem Soc, 2016,164(7):A1412-A1424.  

    20. [20]

      Kang H, Lim C, Li T. Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions[J]. Electrochim Acta, 2017,232:431-438. doi: 10.1016/j.electacta.2017.02.151

    21. [21]

      Zielke L, Hutzenlaub T, Wheeler D R. Three Phase Multiscale Modeling of a LiCoO2 Cathode:Combining the Advantages of FIB-SEM Imaging and X-Ray[J]. Adv Energy Mater, 2015,5(5)1401612. doi: 10.1002/aenm.201401612

    22. [22]

      Zielke L, Hutzenlaub T, Wheeler D R. A Combination of X-Ray Tomography and Carbon Binder Modeling:Reconstructing the Three Phases of LiCoO2 Li-Ion Battery Cathodes[J]. Adv Energy Mater, 2014,4(8)1301617. doi: 10.1002/aenm.201301617

    23. [23]

      Vierrath S, Zielke L, Moroni R. Morphology of Nanoporous Carbon-Binder Domains in Li-Ion Batteries-A FIB-SEM Study[J]. Electrochem Commun, 2015,60:176-179. doi: 10.1016/j.elecom.2015.09.010

    24. [24]

      Etiemble A, Besnard N, Bonnin A. Multiscale Morphological Characterization of Process Induced Heterogeneities in Blended Positive Electrodes for Lithium-Ion Batteries[J]. J Mater Sci, 2017,52(7):3576-3596. doi: 10.1007/s10853-016-0374-x

    25. [25]

      Doyle M, Fuller T F, Newman J. Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell[J]. J Electrochem Soc, 1993,140(6):1526-1533. doi: 10.1149/1.2221597

    26. [26]

      Yuan S, Jiang L, Yin C. A Transfer Function Type of Simplified Electrochemical Model with Modified Boundary Conditions and Pad Approximation for Li-Ion Battery:Part 2.Modeling and Parameter Estimation[J]. J Power Sources, 2017,352:258-271. doi: 10.1016/j.jpowsour.2017.03.061

    27. [27]

      Yuan S, Jiang L, Yin C. A Transfer Function Type of Simplified Electrochemical Model with Modified Boundary Conditions and Pad Approximation for Li-Ion Battery:Part 1.Lithium Concentration Estimation[J]. J Power Sources, 2017,352:245-257. doi: 10.1016/j.jpowsour.2017.03.060

    28. [28]

      Feinauer J, Brereton T, Spettl A. Stochastic 3D Modeling of the Microstructure of Lithium-Ion Battery Anodes via Gaussian Random Fields on the Sphere[J]. Comp Mater Sci, 2015,109:137-146. doi: 10.1016/j.commatsci.2015.06.025

    29. [29]

      HE Shaoyang, ZENG Jianbang, JIANG Fangming. Numerical Reconstruction and Characterization Analysis of Microstructure of Lithium-Ion Battery Graphite Anode[J]. J Inorg Mater, 2015,30(9):906-912.  

    30. [30]

      WU Wei, JIANG Fangming, ZENG Jianbang. Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients[J]. Acta Phys-Chim Sin, 2013(11):2361-2370. doi: 10.3866/PKU.WHXB201309032

    31. [31]

      Wu W, Jiang F. Simulated Annealing Reconstruction and Characterization of the Three-Dimensional Microstructure of a LiCoO2 Lithium-Ion Battery Cathode[J]. Mater Charact, 2013,80:62-68. doi: 10.1016/j.matchar.2013.03.011

    32. [32]

      Jiang Z, Qu Z. Lattice Boltzmann Simulation of Ion and Electron Transport in Lithium Ion Battery Porous Electrode During Discharge Process[J]. Energy Procedia, 2016,88:642-646. doi: 10.1016/j.egypro.2016.06.091

    33. [33]

      Kriston A, Pfrang A, Boon-Brett L. Development of Multi-scale Structure Homogenization Approaches Based on Modeled Particle Deposition for the Simulation of Electrochemical Energy Conversion and Storage Devices[J]. Electrochim Acta, 2016,201:380-394. doi: 10.1016/j.electacta.2016.03.029

    34. [34]

      Cerbelaud M, Lestriez B, Videcoq A. Understanding the Structure of Electrodes in Li-Ion Batteries:A Numerical Study[J]. J Electrochem Soc, 2015,162(8):A1485-A1492. doi: 10.1149/2.0431508jes

    35. [35]

      Jiang Z Y, Qu Z G, Zhou L. Lattice Boltzmann Simulation of Ion and Electron Transport During the Discharge Process in a Randomly Reconstructed Porous Electrode of a Lithium-Ion Battery[J]. Int J Heat Mass Transfer, 2018,123:500-513. doi: 10.1016/j.ijheatmasstransfer.2018.03.004

    36. [36]

      Jiang Z Y, Qu Z G, Zhou L. A Microscopic Investigation of Ion and Electron Transport in Lithium-Ion Battery Porous Electrodes Using the Lattice Boltzmann Method[J]. Appl Energy, 2017,194:530-539. doi: 10.1016/j.apenergy.2016.10.125

    37. [37]

      He S, Habte B T, Jiang F. LBM Prediction of Effective Electric and Species Transport Properties of Lithium-Ion Battery Graphite Anode[J]. Solid State Ionics, 2016,296:146-153. doi: 10.1016/j.ssi.2016.09.021

    38. [38]

      Wu L, Xiao X, Wen Y. Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-ray Tomography Reconstructed Nickel-Manganese-Cobalt Based Half Cell[J]. J Power Sources, 2016,336:8-18. doi: 10.1016/j.jpowsour.2016.10.052

    39. [39]

      Kashkooli A G, Amirfazli A, Farhad S. Representative Volume Element Model of Lithium-Ion Battery Electrodes Based on X-ray Nano-Tomography[J]. J Appl Electrochem, 2017,47(3):281-293. doi: 10.1007/s10800-016-1037-y

    40. [40]

      Kashkooli A G, Farhad S, Lee D U. Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-scale X-ray Computed Tomography[J]. J Power Sources, 2016,307:496-509. doi: 10.1016/j.jpowsour.2015.12.134

    41. [41]

      Ogihara N, Itou Y, Sasaki T. Impedance Spectroscopy Characterization of Porous Electrodes Under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries[J]. The J Phys Chem C, 2015,119(9):4612-4619. doi: 10.1021/jp512564f

    42. [42]

      Nara H, Morita K, Mukoyama D. Impedance Analysis of LiNi1/3Mn1/3Co1/3O2 Cathodes with Different Secondary-Particle Size Distribution in Lithium-Ion Battery[J]. Electrochim Acta, 2017,241:323-330. doi: 10.1016/j.electacta.2017.04.153

    43. [43]

      Landesfeind J, Hattendorff J, Ehrl A. Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy[J]. J Electrochem Soc, 2016,163(7):A1373-A1387. doi: 10.1149/2.1141607jes

    44. [44]

      Ogihara N, Kawauchi S, Okuda C. Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell[J]. J Electrochem Soc, 2012,159(7):A1034-A1039. doi: 10.1149/2.057207jes

    45. [45]

      Chen Y H, Wang C W, Zhang X. Porous Cathode Optimization for Lithium Cells:Ionic and Electronic Conductivity, Capacity, and Selection of Materials[J]. J Power Sources, 2010,195(9):2851-2862. doi: 10.1016/j.jpowsour.2009.11.044

    46. [46]

      Dash R, Pannala S. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries[J]. Sci Rep-UK, 2016,627449. doi: 10.1038/srep27449

    47. [47]

      Heubner C, Langklotz U, Michaelis A. Theoretical Optimization of Electrode Design Parameters of Si Based Anodes for Lithium-Ion Batteries[J]. J Energy Storage, 2018,15:181-190. doi: 10.1016/j.est.2017.11.009

    48. [48]

      Zhao H, Yang Q, Yuca N. A Convenient and Versatile Method to Control the Electrode Microstructure Toward High-Energy Lithium-Ion Batteries[J]. Nano Lett, 2016,16(7):4686-4690. doi: 10.1021/acs.nanolett.6b02156

    49. [49]

      Ramadesigan V, Methekar R N, Latinwo F. Optimal Porosity Distribution for Minimized Ohmic Drop Across a Porous Electrode[J]. J Electrochem Soc, 2010,157(12):A1328-A1334. doi: 10.1149/1.3495992

    50. [50]

      Golmon S, Maute K, Dunn M L. A Design Optimization Methodology for Li+ Batteries[J]. J Power Sources, 2014,253:239-250. doi: 10.1016/j.jpowsour.2013.12.025

    51. [51]

      Dai Y, Srinivasan V. On Graded Electrode Porosity as a Design Tool for Improving the Energy Density of Batteries[J]. J Electrochem Soc, 2016,163(3):A406-A416. doi: 10.1149/2.0301603jes

    52. [52]

      Du Z, Wood D L, Daniel C. Understanding Limiting Factors in Thick Electrode Performance as Applied to High Energy Density Li-Ion Batteries[J]. J Appl Electrochem, 2017,47(3):405-415. doi: 10.1007/s10800-017-1047-4

    53. [53]

      Huang C, Young N P, Zhang J. A Two Layer Electrode Structure for Improved Li Ion Diffusion and Volumetric Capacity in Li Ion Batteries[J]. Nano Energy, 2017,31:377-385. doi: 10.1016/j.nanoen.2016.11.043

    54. [54]

      Ebner M, Chung D, Garcia R E. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes[J]. Adv Energy Mater, 2014,4(5)13012785.  

    55. [55]

      Chung D, Ebner M, Ely D R. Validity of the Bruggeman Relation for Porous Electrodes[J]. Model Simul Mater Sci, 2013,21(7)740097.  

    56. [56]

      Ebner M, Wood V. Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes[J]. J Electrochem Soc, 2015,162(2):A3064-A3070. doi: 10.1149/2.0111502jes

    57. [57]

      Dubeshter T, Sinha P K, Sakars A. Measurement of Tortuosity and Porosity of Porous Battery Electrodes[J]. J Electrochem Soc, 2014,161(4):A599-A605. doi: 10.1149/2.073404jes

    58. [58]

      Vadakkepatt A, Trembacki B, Mathur S R. Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes[J]. J Electrochem Soc, 2016,163(2):A119-A130. doi: 10.1149/2.0151602jes

    59. [59]

      Chen-Wiegart Y K, Demike R, Erdonmez C. Tortuosity Characterization of 3D Microstructure at Nano-scale for Energy Storage and Conversion Materials[J]. J Power Sources, 2014,249:349-356. doi: 10.1016/j.jpowsour.2013.10.026

    60. [60]

      Bae C, Erdonmez C K, Halloran J W. Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance[J]. Adv Mater, 2013,25(9):1254-1258. doi: 10.1002/adma.v25.9

    61. [61]

      Mohammadian S K, Zhang Y. Improving Wettability and Preventing Li-Ion Batteries from Thermal Runaway Using Microchannels[J]. Int J Heat Mass Transfer, 2018,118(Supplement C):911-918.  

    62. [62]

      Behr S, Amin R, Chiang Y. Highly Structured, Additive Free Lithium-Ion Cathodes by Freeze-Casting Technology[J]. Ceram Forum Int, 2015,92(4):39-43.  

    63. [63]

      Sander J S, Erb R M, Li L. High-Performance Battery Electrodes via Magnetic Templating[J]. Nat Energy, 2016,116099. doi: 10.1038/nenergy.2016.99

    64. [64]

      Billaud J, Bouville F, Magrini T. Magnetically Aligned Graphite Electrodes for High-Rate Performance Li-Ion Batteries[J]. Nat Energy, 2016,116097. doi: 10.1038/nenergy.2016.97

    65. [65]

      Lu L L, Lu Y Y, Xiao Z J. Wood-Inspired High-Performance Ultrathick Bulk Battery Electrodes[J]. Adv Mater, 20181706745.  

    66. [66]

      Dominko R, Gaberscek M, Drofenik J. The Role of Carbon Black Distribution in Cathodes for Li Ion Batteries[J]. J Power Sources, 2003,119/120/121:770-773.  

    67. [67]

      Zheng H, Yang R, Liu G. Cooperation Between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode[J]. J Phys Chem C, 2012,116(7):4875-4882. doi: 10.1021/jp208428w

    68. [68]

      Liu G, Zheng H, Song X. Particles and Polymer Binder Interaction:A Controlling Factor in Lithium-Ion Electrode Performance[J]. J Electrochem Soc, 2012,159(3)A214. doi: 10.1149/2.024203jes

    69. [69]

      Ha S, Ramani V K, Lu W. Optimization of Inactive Material Content in Lithium Iron Phosphate Electrodes for High Power Applications[J]. Electrochim Acta, 2016,191:173-182. doi: 10.1016/j.electacta.2016.01.049

    70. [70]

      Li W, Chen S, Yu J. In-Situ Synthesis of Interconnected SWCNT/OMC Framework on Silicon Nanoparticles for High Performance Lithium-Ion Batteries[J]. Green Energy Environ, 2016,1(1):91-99. doi: 10.1016/j.gee.2016.04.005

    71. [71]

      Shi Y, Wen L, Pei S. Choice for Graphene as Conductive Additive for Cathode of Lithium-Ion Batteries[J]. J Energy Chem, 2018.  

    72. [72]

      SU Fangyuan, TANG Rui, HE Yanbing. Graphene Conductive Additives for Lithium Ion Batteries:Origin, Progress and Prospect[J]. Chinese Sci Bull, 2017,62(32):3743-3756.  

    73. [73]

      Bockholt H, Indrikova M, Netz A. The Interaction of Consecutive Process Steps in the Manufacturing of Lithium-Ion Battery Electrodes with Regard to Structural and Electrochemical Properties[J]. J Power Sources, 2016,325:140-151. doi: 10.1016/j.jpowsour.2016.05.127

    74. [74]

      Liu T, Li X, Sun S. Analysis of the Relationship Between Vertical Imparity Distribution of Conductive Additive and Electrochemical Behaviors in Lithium Ion Batteries[J]. Electrochim Acta, 2018,269:422-428. doi: 10.1016/j.electacta.2018.03.038

    75. [75]

      Chen L C, Liu D, Liu T J. Improvement of Lithium-Ion Battery Performance Using a Two-Layered Cathode by Simultaneous Slot-Die Coating[J]. J Energy Storage, 2016(6):156-162.  

    76. [76]

      Li C, Wang Y. Binder Distributions in Water-Based and Organic-Based LiCoO2Electrode Sheets and Their Effects on Cell Performance[J]. J Electrochem Soc, 2011,158(12):A1361-A1370. doi: 10.1149/2.107112jes

    77. [77]

      Baunach M, Jaiser S, Schmelzle S. Delamination Behavior of Lithium-Ion Battery Anodes:Influence of Drying Temperature During Electrode Processing[J]. Dry Technol, 2016,34(4):462-473. doi: 10.1080/07373937.2015.1060497

    78. [78]

      Stein I M, Mistry A, Mukherjee P P. Mechanistic Understanding of the Role of Evaporation in Electrode Processing[J]. J Electrochem Soc, 2017,164(7):A1616-A1627. doi: 10.1149/2.1271707jes

    79. [79]

      Jaiser S, Funk L, Baunach M. Experimental Investigation into Battery Electrode Surfaces:The Distribution of Liquid at the Surface and the Emptying of Pores During Drying[J]. J Colloid Interface Sci, 2017,494:22-31. doi: 10.1016/j.jcis.2017.01.063

    80. [80]

      Jaiser S, Kumberg J, Klaver J. Microstructure Formation of Lithium-Ion Battery Electrodes During Drying-An Ex-Situ Study Using Cryogenic Broad Ion Beam Slope-Cutting and Scanning Electron Microscopy(Cryo-BIB-SEM)[J]. J Power Sources, 2017,345:97-107. doi: 10.1016/j.jpowsour.2017.01.117

    81. [81]

      Liu Z, Battaglia V, Mukherjee P P. Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing[J]. Langmuir ACS J Surf Colloids, 2014,30(50):15102-15113. doi: 10.1021/la5038469

    82. [82]

      Wenzel V, Nirschl H, Nötzel D. Challenges in Lithium-Ion-Battery Slurry Preparation and Potential of Modifying Electrode Structures by Different Mixing Processes[J]. Energy Technol-Ger, 2015,3(7):692-698. doi: 10.1002/ente.201402218

    83. [83]

      Kraytsberg A, Ein Eli Y. Conveying Advanced Li-Ion Battery Materials into Practice the Impact of Electrode Slurry Preparation Skills[J]. Adv Energy Mater, 2016,6(21)1600655. doi: 10.1002/aenm.201600655

    84. [84]

      Bauer W, Tzel D N, Wenzel V. Influence of Dry Mixing and Distribution of Conductive Additives in Cathodes for Lithium Ion Batteries[J]. J Power Sources, 2015,288:359-367. doi: 10.1016/j.jpowsour.2015.04.081

    85. [85]

      Westphal B G, Mainusch N, Meyer C. Influence of High Intensive Dry Mixing and Calendering on Relative Electrode Resistivity Determined via an Advanced Two Point Approach[J]. J Energy Storage, 2017,11:76-85. doi: 10.1016/j.est.2017.02.001

    86. [86]

      Bockholt H, Haselrieder W, Kwade A. Intensive Powder Mixing for Dry Dispersing of Carbon Black and Its Relevance for Lithium-Ion Battery Cathodes[J]. Powder Technol, 2016,297:266-274. doi: 10.1016/j.powtec.2016.04.011

    87. [87]

      Whitacre J F, Zaghib K, West W C. Dual Active Material Composite Cathode Structures for Li-Ion Batteries[J]. J Power Sources, 2008,177(2):528-536. doi: 10.1016/j.jpowsour.2007.11.076

    88. [88]

      Ji H S, Ahn W, Kwon I. Operability Coating Window of Dual-Layer Slot Coating Process Using Viscocapillary Model[J]. Chem Eng Sci, 2016,143:122-129. doi: 10.1016/j.ces.2015.12.016

    89. [89]

      Ludwig B, Zheng Z, Shou W. Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries[J]. Sci Rep-UK, 2016,623150. doi: 10.1038/srep23150

    90. [90]

      Al-Shroofy M, Zhang Q, Xu J. Solvent-Free Dry Powder Coating Process for Low-Cost Manufacturing of LiNi1/3Mn1/3Co1/3O2 Cathodes in Lithium-Ion Batteries[J]. J Power Sources, 2017,352:187-193. doi: 10.1016/j.jpowsour.2017.03.131

    91. [91]

      Hamamoto K, Fukushima M, Mamiya M. Morphology Control and Electrochemical Properties of LiFePO4/C Composite Cathode for Lithium Ion Batteries[J]. Solid State Ionics, 2012,225:560-563. doi: 10.1016/j.ssi.2012.01.034

    92. [92]

      Li J, Leu M C, Panat R. A Hybrid Three-Dimensionally Structured Electrode for Lithium-Ion Batteries Via 3D Printing[J]. Mater Des, 2017,119:417-424. doi: 10.1016/j.matdes.2017.01.088

    93. [93]

      Azhari A, Marzbanrad E, Yilman D. Binder-Jet Powder-Bed Additive Manufacturing(3D Printing) of Thick Graphene-Based Electrodes[J]. Carbon, 2017,119:257-266. doi: 10.1016/j.carbon.2017.04.028

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    8. [8]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    17. [17]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(126)
  • Abstract views(5873)
  • HTML views(896)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return