Citation: YUAN Ting, MENG Ting, LI Shuhua, FAN Louzhen. Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 871-880. doi: 10.11944/j.issn.1000-0518.2018.08.180154 shu

Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials

  • Corresponding author: FAN Louzhen, lzfan@bnu.edu.cn
  • Contributed equally to this paper
  • Received Date: 4 May 2018
    Revised Date: 25 June 2018
    Accepted Date: 25 June 2018

    Fund Project: the National Natural Science Foundation of China 21573019Supported by the National Natural Science Foundation of China(No.21233003, No.21573019), the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21233003

Figures(6)

  • The development of electroluminescent light-emitting diodes(LEDs) has been received widespread attention for their potential applications in solid-state lighting technology, full-color displays due to their superior properties such as energy-saving, robust, long-lifetime and environment-friendly features. The notable advantage of electrophosphorescent LEDs is that they can simultaneously utilize both singlet and triplet exciton states which can reach to 100% internal quantum efficiency theoretically compared with those of conventional fluorescent LEDs. Therefore, it is highly desired to develop LEDs based on phosphorescent materials. In this review, we mainly discussed the latest researches on phosphorescent materials, including organometallic complexes, organic molecules, polymers, metal-organic frameworks and carbon quantum dots, etc., and focused on the applications of electrophosphorescent materials in LEDs. We hope this review will provide critical insights to inspire more exciting researches on environment-friendly phosphorescent materials for the application of electrophosphorescent LEDs in the near future.
  • 加载中
    1. [1]

      Helfrich W, Schneider W G. Recombination Radiation in Anthracene Crystals[J]. Phys Rev Lett, 1965,14(7):229-231. doi: 10.1103/PhysRevLett.14.229

    2. [2]

      Hoshino S, Suzuki H. Electroluminescence from Triplet Excited States of Benzophene[J]. Appl Phys Lett, 1996,69(2):224-227. doi: 10.1063/1.117379

    3. [3]

      Baldo M A, O'Brien D F, You Y. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature, 1998,395(6698):151-154. doi: 10.1038/25954

    4. [4]

      Zhang G Q, Chen J B, Payne Sarah J. Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature Phosphorescence[J]. J Am Chem Soc, 2007,129(29):8942-8943. doi: 10.1021/ja0720255

    5. [5]

      Yuan W Z, Shen X Y, Zhao H. Crystallization-induced Phosphorescence of Pure Organic Luminogens at Room Temperature[J]. J Phys Chem C, 2010,114(13):6090-6099. doi: 10.1021/jp909388y

    6. [6]

      Bolton O, Lee K, Kim H J. Activating Efficient Phosphorescence from Purely Organic Materials by Crystal Design[J]. Nat Chem, 2011,3(3):201-210.  

    7. [7]

      Deng Y H, Zhao D X, Chen X. Long Lifetime Pure Organic Phosphorescence Based on Water Soluble Carbon Dots[J]. Chem Commun, 2013,49(51):5751-5753. doi: 10.1039/c3cc42600a

    8. [8]

      An Z F, Zheng C, Tao Y. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence[J]. Nat Mater, 2015,14(7):685-690. doi: 10.1038/nmat4259

    9. [9]

      Yang X G, Yan D P. Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrids[J]. Adv Opt Mater, 2016,4(6):897-905. doi: 10.1002/adom.v4.6

    10. [10]

      Kabe R, Notsuka N, Yoshida K. Afterglow Organic Light-Emitting Diode[J]. Adv Mater, 2016,28(4):655-660. doi: 10.1002/adma.201504321

    11. [11]

      Xue P Z, Sun J B, Chen P. Luminescence Switching of a Persistent Room-temperature Phosphorescent Pure Organic Molecule in Response to External Stimuli[J]. Chem Commun, 2015,51(52):10381-10384. doi: 10.1039/C5CC03403E

    12. [12]

      Li C Y, Tang X, Zhang L Q. Reversible Luminescence Switching of an Organic Solid:Controllable On-Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion[J]. Adv Opt Mater, 2015,3(9):1184-1190. doi: 10.1002/adom.v3.9

    13. [13]

      Katsurada Y, Hirata S, Totani K. Photoreversible On-Off Recording of Persistent Room-Temperature Phosphorescence[J]. Adv Opt Mater, 2015,3(12):1726-1737. doi: 10.1002/adom.v3.12

    14. [14]

      DeRosa C A, Samonina-Kosicka J, Fan Z Y. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules, 2015,48(9):2967-2977. doi: 10.1021/acs.macromol.5b00394

    15. [15]

      Jiang K, Zhang L, Lu J F. Triple-Mode Emission of Carbon Dots:Applications for Advanced Anti-Counterfeiting[J]. Angew Chem Int Ed, 2016,128(25):7347-7351. doi: 10.1002/ange.201602445

    16. [16]

      Jiang K, Wang Y H, Gao X L. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation[J]. Angew Chem Int Ed, 2018,57(21):6216-6220. doi: 10.1002/anie.v57.21

    17. [17]

      Yang Z Y, Mao Z, Zhang X P. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed, 2016,55(6):2181-2185. doi: 10.1002/anie.201509224

    18. [18]

      Fukagawa H, Shimizu T, Hanashima H. Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes[J]. Adv Mater, 2012,24(37):5099-5103. doi: 10.1002/adma.201202167

    19. [19]

      Wang H, Meng L Q, Shen X X. Highly Efficient Orange and Red Phosphorescent Organic Light-Emitting Diodes with Low Roll-Off of Efficiency Using a Novel Thermally Activated Delayed Fluorescence Material as Host[J]. Adv Mater, 2015,27(27):4041-4047. doi: 10.1002/adma.201501373

    20. [20]

      Han C M, Zhang Z S, Xu H. Controllably Tuning Excited-State Energy in Ternary Hosts for Ultralow-Voltage-Driven Blue Electrophosphorescence[J]. Angew Chem Int Ed, 2012,51(40):10104-10108. doi: 10.1002/anie.201202702

    21. [21]

      Fateminia S M A, Mao Z, Xu S D. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications[J]. Angew Chem Int Ed, 2017,56(40):12160-12164. doi: 10.1002/anie.201705945

    22. [22]

      Li Q J, Zhou M, Yang M Y. Induction of Long-lived Room Temperature Phosphorescence of Carbon Dots by Water in Hydrogen-bonded Matrices[J]. Nat Commun, 2018,9:7341-7348.

    23. [23]

      Xu S, Chen R F, Zhen C. Excited State Modulation for Organic Afterglow:Materials and Applications[J]. Adv Mater, 2016,28(45):9920-9940. doi: 10.1002/adma.201602604

    24. [24]

      Yang Z Y, Mao Z, Xie Z L. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials[J]. Chem Soc Rev, 2017,46(3):915-1016. doi: 10.1039/C6CS00368K

    25. [25]

      ZHAO Xuesen, CUI Rongzhen, LI Yunhui. Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices[J]. Chinese J Appl Chem, 2016,33(9):1003-1007.  

    26. [26]

      Clapp D B. The Phosphorescence of Tetraphenylmethane and Certain Related Substances[J]. J Am Chem Soc, 1939,61(2):523-524.  

    27. [27]

      Bilen C S, Harrison N, Morantz D J. Unusual Room Temperature Afterglow in Some Crystalline Organic Compounds[J]. Nature, 1978,271(5642):235-237. doi: 10.1038/271235a0

    28. [28]

      Gong Y Y, Chen G, Peng Q. Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens[J]. Adv Mater, 2015,27(40):6195-6201. doi: 10.1002/adma.201502442

    29. [29]

      Yang Z Y, Mao Z, Zhang X P. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed, 2016,55(6):2181-2185. doi: 10.1002/anie.201509224

    30. [30]

      He Z K, Zhao W J, Lam Jacky W Y. White Light Emission from a Single Organic Molecule with Dual Phosphorescence at Room Temperature[J]. Nat Commun, 2017,8:4161-4168.

    31. [31]

      Yang J, Zhen X, Wang B. The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens[J]. Nat Commun, 2018,9:8401-8408.

    32. [32]

      Mieno H, Kabe R, Notsuka N. Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8[J]. Adv Opt Mater, 2016,4(7):1015-1021. doi: 10.1002/adom.201600103

    33. [33]

      Yang Y S, Wang K Z, Yan D P. Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission[J]. ACS Appl Mater Interfaces, 2016,8(24):15489-15496. doi: 10.1021/acsami.6b03956

    34. [34]

      Pfister A, Zhang G, Zareno J. Boron Polylactide Nanoparticles Exhibiting Fluorescence and Phosphorescence in Aqueous Medium[J]. ACS Nano, 2008,2(6):1252-1258. doi: 10.1021/nn7003525

    35. [35]

      Samoninakosicka J, Derosa C A, Morris W A. Dual-Emissive Difluoroboron Naphthyl-Phenyl β-DiketonatePolylactide Materials:Effects of Heavy Atom Placement and Polymer Molecular Weight[J]. Macromolecules, 2014,47(11):3736-3746. doi: 10.1021/ma5006606

    36. [36]

      Derosa C A, Samoninakosicka J, Fan Z. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules, 2015,48(9):2967-2977. doi: 10.1021/acs.macromol.5b00394

    37. [37]

      Al-Attar H A, Monkman A P. Room-Temperature Phosphorescence From Films of Isolated Wate-Soluble Conjugated Polymers in Hydrogen-Bonded Matrices[J]. Adv Funct Mater, 2012,22(18):3824-3832. doi: 10.1002/adfm.v22.18

    38. [38]

      Fan Z T, Li Y C, Li X H. Surrounding Media Sensitive Photoluminescence of Boron-doped Graphene Quantum Dots for Highly Fluorescent Dyed Crystals, Chemical Sensing and Bioimaging[J]. Carbon, 2014,70:149-156. doi: 10.1016/j.carbon.2013.12.085

    39. [39]

      Tan X Y, Li Y C, Li X H. Electrochemical Synthesis of Small-sized Red Fluorescent Graphene Quantum Dots as a Bioimaging Platform[J]. Chem Commun, 2015,51(13):2544-2546. doi: 10.1039/C4CC09332A

    40. [40]

      Fan Z T, Li S H, Yuan F L. Fluorescent Graphene Quantum Dots for Biosensing and Bioimaging[J]. RSC Adv, 2015,5(25):19773-19789. doi: 10.1039/C4RA17131D

    41. [41]

      Yuan F L, Ding L, Li Y C. Multicolor Fluorescent Graphene Quantum Dots Colorimetrically Responsive to All-pH and a Wide Temperature Range[J]. Nanoscale, 2015,7(27):11727-11733. doi: 10.1039/C5NR02007G

    42. [42]

      Guo R H, Zhou S X, Li Y C. Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3+ in Cancer Stem Cells[J]. ACS Appl Mater Interfaces, 2015,7(43):23958-23966. doi: 10.1021/acsami.5b06523

    43. [43]

      Yuan F L, Li S H, Fan Z T. Shining Carbon Dots:Synthesis and Biomedical and Optoelectronic Applications[J]. Nano Today, 2016,11(5):565-586. doi: 10.1016/j.nantod.2016.08.006

    44. [44]

      Wang Z F, Yuan F L, Li X H. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes[J]. Adv Mater, 2017,29(37)1702910. doi: 10.1002/adma.v29.37

    45. [45]

      Fan Z T, Zhou S X, Garcia C. pH-Responsive Fluorescent Graphene Quantum Dots for Fluorescence-guided Cancer Surgery and Diagnosis[J]. Nanoscale, 2017,9(15):4928-4933. doi: 10.1039/C7NR00888K

    46. [46]

      Yuan F L, Wang Z B, Li X H. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes[J]. Adv Mater, 2017,29(3)1604436. doi: 10.1002/adma.v29.3

    47. [47]

      Yuan F L, Yuan T, Sui L Z. Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs[J]. Nat Commun, 2018,9:22491-224911.  

    48. [48]

      Tan J, Zhang J, Wang L. Synthesis of Smphiphilic Carbon Quantum Dots with Phosphorescence Properties and Their Multifunctional Applications[J]. J Mater Chem C, 2016,4(42):10146-10153. doi: 10.1039/C6TC03027K

    49. [49]

      Tan J, Zou R, Zhang J. Large-scale Synthesis of N-Doped Carbon Quantum Dots and Their Phosphorescence Properties in a Polyurethane Matrix[J]. Nanoscale, 2016,8(8):4742-4747. doi: 10.1039/C5NR08516K

    50. [50]

      Dong X W, Wei L M, Su Y J. Efficient Long Lifetime Room Temperature Phosphorescence of Carbon Dots in a Potash Alum Matrix[J]. J Mater Chem C, 2015,3(12):2798-2801. doi: 10.1039/C5TC00126A

    51. [51]

      Li Q J, Zhou M, Yang Q F. Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices[J]. Chem Mater, 2016,28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049

    52. [52]

      Bai L Q, Xue N, Wang X R. Activating Efficient Room Temperature Phosphorescence of Carbon Dots by Synergism of Orderly Non-noble Metals and Dual Structural Confinements[J]. Nanoscale, 2017,9(20):6658-6664. doi: 10.1039/C6NR09648D

    53. [53]

      Tao S Y, Lu S Y, Geng Y J. Design of Metal-Free Polymer Carbon Dots:A New Class of Room-Temperature Phosphorescent Materials[J]. Angew Chem Int Ed, 2018,57(9):2393-2398. doi: 10.1002/anie.201712662

    54. [54]

      Baldo M A, Lamasky S, Burrows P E. Very High-efficiency Green Organic Light-emitting Devices Based on Electrophosphoresoence[J]. Appl Phys Lett, 1999,75(1):4-6. doi: 10.1063/1.124258

    55. [55]

      Adachi C, Baldo M A, Forrest S R. High-efficiency Red Electrophosphorescence Devices[J]. Appl Phys Lett, 2001,78(11):1622-1624. doi: 10.1063/1.1355007

    56. [56]

      Zhu W, Mo Y, Yuan M. Highly Efficient Electrophosphorescent Devices Based on Conjugated Polymers Doped with Iridium Complexes[J]. Appl Phys Lett, 2002,80(12):2045-2047. doi: 10.1063/1.1461418

    57. [57]

      Adachi C, Baldo M A, Thompson M E. Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-emitting Device[J]. J Appl Phys, 2001,90(10):5048-5051. doi: 10.1063/1.1409582

    58. [58]

      Benjamin H, Zheng Y, Batsanov A S. Sulfonyl-substituted Heteroleptic Cyclometalated Iridium(Ⅲ) Complexes as Blue Emitters for Solution-processable Phosphorescent Organic Light-emitting Diodes[J]. Inorg Chem, 2016,55(17):8612-8627. doi: 10.1021/acs.inorgchem.6b01179

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(6)
  • Abstract views(406)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return