Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting: Opportunity and Challenge
- Corresponding author: XIA Zhiguo, xiazg@ustb.edu.cn
Citation:
LI Fei, XIA Zhiguo. Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting: Opportunity and Challenge[J]. Chinese Journal of Applied Chemistry,
;2018, 35(8): 859-870.
doi:
10.11944/j.issn.1000-0518.2018.08.180152
Nakamura S, Mukai T, Senoh M. High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green-Light-Emitting Diodes[J]. J Appl Phys, 1994,76(12):8189-8191. doi: 10.1063/1.357872
Li G, Tian Y, Zhao Y. Recent Progress in Luminescence Tuning of Ce3+ and Eu2+-Activated Phosphors for pc-WLEDs[J]. Chem Soc Rev, 2015,44(23):8688-8713. doi: 10.1039/C4CS00446A
Xia Z, Xu Z, Chen M. Recent Developments in the New Inorganic Solid-state LED Phosphors[J]. Dalton Trans, 2016,45(28):11214-11232. doi: 10.1039/C6DT01230B
Dorenbos P. A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds[J]. ECS J Solid State SC, 2013,2(2):R3001-R3011. doi: 10.1149/2.001302jss
Xia Z, Liu Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs[J]. Prog Mater Sci, 2016,84:59-117. doi: 10.1016/j.pmatsci.2016.09.007
George N C, Denault K A, Seshadri R. Phosphors for Solid-State White Lighting[J]. Ann Rev Mater Res, 2013,43(1):481-501. doi: 10.1146/annurev-matsci-073012-125702
Narendran N, Gu Y. Life of LED-Based White Light Sources[J]. J Disp Technol, 2005,1(1):167-171. doi: 10.1109/JDT.2005.852510
Pimputkar S, Speck J S, DenBaars S P. Prospects for LED Lighting[J]. Nat Photonics, 2009,3(4):180-182. doi: 10.1038/nphoton.2009.32
Rohwer L S, Srivastava A M. Development of Phosphors for LEDs[J]. Electrochem Soc Interface, 2003,12(2):36-39.
Kim Y H, Viswanath N S M, Unithrattil S. Review-Phosphor Plates for High-Power LED Applications:Challenges and Opportunities Toward Perfect Lighting[J]. ECS J Solid State SC, 2017,7(1):R3134-R3147.
Katelnikovas A, Plewa J, Dutczak D. Synthesis and Optical Properties of Green Emitting Garnet Phosphors for Phosphor-Converted Light Emitting Diodes[J]. Opt Mater, 2012,34(7):1195-1201. doi: 10.1016/j.optmat.2012.01.034
Akai T, Shigeiwa M, Okamoto K, et al XAFS Analysis of Local Structure Around Ce in Ca3Sc2Si3O12: Ce Phosphor for White LEDs[C]//AIP Conference Proceedings, AIP: 2007: 389-391.
Elliott J. Recent Progress in the Chemistry, Crystal Chemistry and Structure of the Apatites[J]. Calcif Tissue Int, 1969,3(1):293-307. doi: 10.1007/BF02058672
White T J, Dong Z. Structural Derivation and Crystal Chemistry of Apatites[J]. Acta Crystallogr B, 2003,59(1):1-16. doi: 10.1107/S0108768102019894
Kusaka K, Hagiya K, Ohmasa M. Determination of Structures of Ca2CoSi2O7, Ca2MgSi2O7, and Ca2(Mg0.55Fe0.45)Si2O7 in Incommensurate and Normal Phases and Observation of Diffuse Streaks at High Temperature[J]. Phys Chem Miner, 2001,28(3):150-166. doi: 10.1007/s002690000147
Zhang M, Wang J, Ding W. Luminescence Properties of M2MgSi2O7:Eu2+(M=Ca, Sr) Phosphors and Their Effects on Yellow and Blue LEDs for Solid-State Lighting[J]. Opt Mater, 2007,30(4):571-578. doi: 10.1016/j.optmat.2007.01.008
Zhang Q, Wang J, Zhang M. Tunable Bluish Green to Yellowish Green Ca2(1-x)Sr2xAl2SiO7:Eu2+ Phosphors for Potential LED Application[J]. Appl Phys B, 2008,92(2):195-198. doi: 10.1007/s00340-008-3089-0
Singh S, Khatkar S, Boora P. Structural and Luminescent Properties of Eu3+-Doped GdSrAl3O7 Nanophosphor[J]. J Mater Sci, 2014,49(14):4773-4779. doi: 10.1007/s10853-014-8176-5
Zhang X, Zhang J, Xu J. Luminescent Properties of Eu2+-Activated SrLaGa3S6O Phosphor[J]. J Alloy Compd, 2005,389(1):247-251.
Aleksovska S, Petruševski V M, Pejov L. Crystal Structures of Members in Isostructural Series:Prediction of the Crystal Structure of Cs2MnO4-K2SO4 Type Isomorph[J]. Croat Chem Acta, 1997,70(4):1009-1019.
Müller-Buschbaum H. The Crystal Chemistry of AM2O4 Oxometallates[J]. J Alloy Compd, 2003,349(1):49-104.
Denault K A, Brgoch J, Gaultois M W. Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2xSiO4:Eu2+ Orthosilicate Phosphors[J]. Chem Mater, 2014,26(7):2275-2282. doi: 10.1021/cm500116u
Marchuk A, Schultz P, Hoch C. M2PO3N(M=Ca, Sr):Ortho-Oxonitridophosphates with β-K2SO4 Structure Type[J]. Inorg Chem, 2015,55(2):974-982.
Black A P, Denault K A, Oró-Solé J. Red Luminescence and Ferromagnetism in Europium Oxynitridosilicates with a β-K2SO4 Structure[J]. Chem Commun, 2015,51(11):2166-2169. doi: 10.1039/C4CC08548E
Zhang S, Nakai Y, Tsuboi T. The Thermal Stabilities of Luminescence and Microstructures of Eu2+-doped KBaPO4 and NaSrPO4with β-K2SO4 Type Structure[J]. Inorg Chem, 2011,50(7):2897-2904. doi: 10.1021/ic102504x
Lim M A, Park J K, Kim C H. Luminescence Characteristics of Green Light Emitting Ba2SiO4:Eu2+ Phosphor[J]. J Mater Sci Lett, 2003,22(19):1351-1353. doi: 10.1023/A:1025739412154
Tang Y S, Hu S F, Lin C C. Thermally Stable Luminescence of KSrPO4:Eu2+ Phosphor for White Light UV Light-Emitting Diodes[J]. Appl Phys Lett, 2007,90(15)151108. doi: 10.1063/1.2721846
Zhang M, Wang J, Zhang Q. Optical Properties of Ba2SiO4:Eu2+ Phosphor for Green Light-Emitting Diode(LED)[J]. Mater Res Bull, 2007,42(1):33-39. doi: 10.1016/j.materresbull.2006.05.011
Lin C C, Xiao Z R, Guo G Y. Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes:Collocated Characteristic Analysis and Theoretical Calculations[J]. J Am Chem Soc, 2010,132(9):3020-3028. doi: 10.1021/ja9092456
Ji H, Huang Z, Xia Z. Discovery of New Solid Solution Phosphors via Cation Substitution-Dependent Phase Transition in M3(PO4)2:Eu2+(M=Ca/Sr/Ba) Quasi-Binary Sets[J]. J Phys Chem C, 2015,119(4):2038-2045. doi: 10.1021/jp509743r
Ye N, Zeng W, Jiang J. New Nonlinear Optical Crystal K2Al2B2O7[J]. JOSA B, 2000,17(5):764-768. doi: 10.1364/JOSAB.17.000764
Okatov S, Ivanovskii A. Chemical Bonding and Atomic Ordering Effects in β-SiAlON[J]. Int J Inorg Mater, 2001,3(7):923-930. doi: 10.1016/S1466-6049(01)00087-3
Wang C, Xin S Y, Wang X C. Double Substitution Induced Tunable Photoluminescence in the Sr2Si5N8:Eu Phosphor Lattice[J]. New J Chem, 2015,39(9):6958-6964. doi: 10.1039/C5NJ00997A
Huang Y, Gan J, Zhu R. Structural Phase Formation and Tunable Luminescence of Eu2+-Activated Apatite-type (Ca, Sr, Ba)5(PO4)2(SiO4)[J]. J Electrochem Soc, 2011,158(11):J334-J340. doi: 10.1149/2.026111jes
Wang T, Zheng P, Liu X. Effects of Replacement of AlO+ for SiN+ on the Structure and Optical Properties of Sr2Si5N8:Eu2+ Phosphors[J]. J Lumin, 2014,147:173-178. doi: 10.1016/j.jlumin.2013.11.016
Xia Z, Ma C, Molokeev M S. Chemical Unit Cosubstitution and Tuning of Photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor[J]. J Am Chem Soc, 2015,137(39):12494-12497. doi: 10.1021/jacs.5b08315
Xia Z, Molokeev M S, Im W B. Crystal Structure and Photoluminescence Evolution of La5(Si2+xB1-x)(O13-xNx):Ce3+ Solid Solution Phosphors[J]. J Phys Chem C, 2015,119(17):9488-9495. doi: 10.1021/acs.jpcc.5b01211
Zhou D, Liu D, Pan G. Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots:A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells[J]. Adv Mater, 2017,29(42)1704149. doi: 10.1002/adma.201704149
Tian G, Gu Z, Zhou L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in Vivo Imaging and Drug Delivery[J]. Adv Mater, 2012,24(9):1226-1231. doi: 10.1002/adma.v24.9
Wood V, Panzer M, Halpert J. Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs[J]. ACS Nano, 2009,3(11):3581-3586. doi: 10.1021/nn901074r
Rafipoor M, Dupont D, Tornatzky H. Strain Engineering in InP/(Zn, Cd)Se Core/Shell Quantum Dots[J]. Chem Mater, 2018.
Tan R, Yuan Y, Nagaoka Y. Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core-Shell Nanocrystals[J]. Chem Mater, 2017,29(9):4097-4108. doi: 10.1021/acs.chemmater.7b00968
Zou H, Liu M, Zhou D. Employing CdSexTe1-x Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes[J]. J Phys Chem C, 2017,121(9):5313-5323. doi: 10.1021/acs.jpcc.6b12129
Zeng R, Zhang T, Dai G. Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals[J]. J Phys Chem C, 2011,115(7):3005-3010. doi: 10.1021/jp111288h
Akkerman Q A, D'Innocenzo V, Accornero S. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions[J]. J Am Chem Soc, 2015,137(32):10276-10281. doi: 10.1021/jacs.5b05602
Zhang F, Zhong H, Chen C. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I, Cl) Quantum Dots:Potential Alternatives for Display Technology[J]. ACS Nano, 2015,9(4):4533-4542. doi: 10.1021/acsnano.5b01154
Zhang X, Zhang Y, Wang Y. Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes[J]. ACS Nano, 2013,7(12):11234-11241. doi: 10.1021/nn405017q
Chen D, Gao H, Chen X. Excitation-Independent Dual-Color Carbon Dots:Surface-State Controlling and Solid-State Lighting[J]. ACS Photonics, 2017,4(9):2352-2358. doi: 10.1021/acsphotonics.7b00675
Kershaw S V, Abdelazim N M, Zhao Y. Investigation of the Exchange Kinetics and Surface Recovery of CdxHg1-xTe Quantum Dots During Cation Exchange Using a Microfluidic Flow Reactor[J]. Chem Mater, 2017,29(7):2756-2768. doi: 10.1021/acs.chemmater.6b04544
Chen D, Chen X, Wan Z. Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs1-mFAmPbX3(X=Cl, Br, and I, 0 < m < 1) Quantum Dots[J]. ACS Appl Mater Interfaces, 2017,9(24):20671-20678. doi: 10.1021/acsami.7b05429
Shen H, Wang H, Li X. Phosphine-Free Synthesis of High Quality ZnSe, ZnSe/ZnS, and Cu-, Mn-Doped ZnSe Nanocrystals[J]. Dalton T, 2009(47):10534-10540. doi: 10.1039/b917674h
Cao L, Zhang J, Ren S. Luminescence Enhancement of Core-Shell ZnS:Mn/ZnS Nanoparticles[J]. Appl Phys Lett, 2002,80(23):4300-4302. doi: 10.1063/1.1483113
Corrado C, Cooper J K, Hawker M. Synthesis and Characterization of Organically Soluble Cu-doped ZnS Nanocrystals with Br Co-Activator[J]. J Phys Chem C, 2011,115(30):14559-14570. doi: 10.1021/jp202734n
Ma L, Chen W. ZnS:Cu, Co Water-Soluble Afterglow Nanoparticles:Synthesis, Luminescence and Potential Applications[J]. Nanotechnology, 2010,21(38)385604. doi: 10.1088/0957-4484/21/38/385604
Li F, Xia Z, Liu Q. Controllable Synthesis and Optical Properties of ZnS:Mn2+/ZnS/ZnS:Cu2+/ZnS Core/Multishell Quantum Dots Toward Efficient White Light Emission[J]. ACS Appl Mater Interfaces, 2017,9(11):9833-9839. doi: 10.1021/acsami.6b15997
Jana S, Srivastava B B, Pradhan N. Correlation of Dopant States and Host Bandgap in Dual-Doped Semiconductor Nanocrystals[J]. J Phys Chem Lett, 2011,2(14):1747-1752. doi: 10.1021/jz200673q
Li F, Xia Z, Pan C. High Br- Content CsPb(ClyBr1-y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering[J]. ACS Appl Mater Interfaces, 2018,10(14):11739-11746. doi: 10.1021/acsami.7b18750
Huang S, Li Z, Wang B. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination[J]. ACS Appl Mater Interfaces, 2017,9(8):7249-7258. doi: 10.1021/acsami.6b14423
Dang Z, Shamsi J, Palazon F. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals[J]. ACS Nano, 2017,11(2):2124-2132. doi: 10.1021/acsnano.6b08324
Zhang F, Huang S, Wang P. Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects[J]. Chem Mater, 2017,29(8):3793-3799. doi: 10.1021/acs.chemmater.7b01100
Zou S, Liu Y, Li J. Stabilizing Cesium Lead Halide Perovskite Lattice Through Mn(Ⅱ) Substitution for Air-Stable Light-Emitting Diodes[J]. J Am Chem Soc, 2017,139(33):11443-11450. doi: 10.1021/jacs.7b04000
Huang S, Li Z, Kong L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene[J]. J Am Chem Soc, 2016,138(18):5749-5752. doi: 10.1021/jacs.5b13101
Loiudice A, Saris S, Oveisi E. CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat[J]. Angew Chem Int Ed, 2017,56(36):10696-10701. doi: 10.1002/anie.201703703
Hu H, Wu L, Tan Y. Interfacial Synthesis of Highly Stable CsPbX3/Oxide Janus Nanoparticles[J]. J Am Chem Soc, 2017,140(1):406-412.
Woo J Y, Kim Y, Bae J. Highly Stable Cesium Lead Halide Perovskite Nanocrystals Through in Situ Lead Halide Inorganic Passivation[J]. Chem Mater, 2017,29(17):7088-7092. doi: 10.1021/acs.chemmater.7b02669
Yuan B, Guan S, Sun X. Highly Efficient Carbon Dots with Reversibly Switchable Green-Red Emissions for Trichromatic White Light-Emitting Diodes[J]. ACS Appl Mater Interfaces, 2018,10(18):16005-16014. doi: 10.1021/acsami.8b02379
Gao R, Zhao M, Guan Y. Ordered and Flexible Lanthanide Complex Thin Films Showing Up-Conversion and Color-Tunable Luminescence[J]. J Mater Chem C, 2014,2(45):9579-9586. doi: 10.1039/C4TC01213E
Li Z, Zhou Y, Yan D. Electrochemiluminescence Resonance Energy Transfer(ERET) Towards Trinitrotoluene Sensor Based on Layer-by-Layer Assembly of Luminol-Layered Double Hydroxides and CdTe Quantum Dots[J]. J Mater Chem C, 2017,5(14):3473-3479. doi: 10.1039/C7TC00100B
Zhou Y, Yan D, Wei M. A 2D Quantum Dot-Based Electrochemiluminescence Film Sensor Towards Reversible Temperature-Sensitive Response and Nitrite Detection[J]. J Mater Chem C, 2015,3(39):10099-10106. doi: 10.1039/C5TC02002F
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
Liangyu Gong , Jie Wang , Fengyu Du , Lubin Xu , Chuanli Ma , Shihai Yan , Zhuwei Song , Fuheng Liu , Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023
Hongyan Feng , Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
(a)Blue chip+Yellow phosphor, (b)UV chip+Red/Green/Blue phosphor