Citation: DA Zulin, ZHAO Yong, SHI Weidong. Facile Preparation of Bi4V2O11/Reduced Graphene Oxide Heterojunction Photocatalysts for the Degradation of Antibiotic Pollutants[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 946-955. doi: 10.11944/j.issn.1000-0518.2018.08.180148 shu

Facile Preparation of Bi4V2O11/Reduced Graphene Oxide Heterojunction Photocatalysts for the Degradation of Antibiotic Pollutants

  • Corresponding author: ZHAO Yong, zyongujs@163.com SHI Weidong, swd1978@ujs.edu.cn
  • Received Date: 2 May 2017
    Revised Date: 24 May 2017
    Accepted Date: 26 May 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21477050, No.21522603, No.21706101), the Henry Fok Education Foundation(No.141068), the Six Talents Peak Project in Jiangsu Province(No.XCL-025), the Chinese-German Cooperation Research Project(No.GZ1091), the China Postdoctoral Foundation(No.2017M611731)

Figures(9)

  • Designing and developing active, cost-effective and stable photocatalysts for the degradation of antibiotic pollutants are still an ongoing challenge. Herein, the fabrication of Bi4V2O11/reduced graphene oxide(BR) composite through a facile hydrothermal reaction, and the effective photocatalytic activity of BR composite towards the degradation of antibiotic pollutants under visible light are demonstrated. The active species of the photocatalytic system are proved to be h+ and·OH radicals by free radical trapping experiments. Based on the results, a reasonably reaction mechanism to explain the improved photocatalytic activity was also given. The introduction of reduced graphene oxide (rGO) can promote the effective separation of photo-generated electron-hole pairs of Bi4V2O11 materials, and ultimately increase its photocatalytic activity. As the results, the composite shows high activity and excellent stability towards the degradation of antibiotic pollutants. This method produces a high photocatalytic activity based on rGO support, providing a new avenue for designing excellent photocatalysts.
  • 加载中
    1. [1]

      Zhang H J, Du G D, Lu W Q. Porous TiO2 Hollow Nanospheres:Synthesis, Characterization and Enhanced Photocatalytic Properties[J]. CrystEngComm, 2012,14(10):3793-3801. doi: 10.1039/c2ce06731e

    2. [2]

      Han C, Wang Y D, Lei Y P. In situ Synthesis of Graphitic-C3N4 Nanosheet Hybridized N-Doped TiO2 Nanofibers for Efficient Photocatalytic H2 Production and Degradation[J]. Nano Res, 2015,8(4):1199-1209. doi: 10.1007/s12274-014-0600-2

    3. [3]

      Shi R, Lin J, Wang Y J. Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst and Mechanism of Photocorrosion Suppression[J]. J Phys Chem C, 2010,114(14):6472-6477. doi: 10.1021/jp9101866

    4. [4]

      Zhang H J, Chen G, Li X. Electronic Structure and Water Splitting Under Visible Light Irradiation of BiTa1-xCuxO4(x=0.00~0.04) Photocatalysts[J]. Int J Hydrogen Energy, 2009,34(9):3631-3638. doi: 10.1016/j.ijhydene.2009.02.053

    5. [5]

      Hao Y C, Dong X L, Zhai S R. Controllable Self-Assembly of a Novel Bi2MoO6-Based Hybrid Photocatalyst:Excellent Photocatalytic Activity Under UV, Visible and Near-infrared Irradiation[J]. Chem Commun, 2016,52(39):6525-6528. doi: 10.1039/C6CC01303A

    6. [6]

      Chen X F, Liu J B, Wang H. One-Step Approach to Novel Bi4V2O11 Hierarchical Hollow Microspheres with High Visible-Light-Driven Photocatalytic Activities[J]. J Mater Chem A, 2013,1(3):877-883. doi: 10.1039/C2TA00312K

    7. [7]

      Yang L X, Li Z Y, Jiang H M. Photoelectrocatalytic Oxidation of Bisphenol a Over Mesh of TiO2/Graphene/Cu2O[J]. Appl Catal B, 2016,183:75-85. doi: 10.1016/j.apcatb.2015.10.023

    8. [8]

      Hummers W S, Offema R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    9. [9]

      Chen Y N, Egan G C, Wan1 J Y. Ultra-Fast Self-Assembly and Stabilization of Reactive Nanoparticles in Reduced Graphene Oxide Films[J]. Nat Commun, 2016,712332. doi: 10.1038/ncomms12332

    10. [10]

      Zhang C M, Chen G, Li C M. In situ Fabrication of Bi2WO6/MoS2/RGO Heterojunction with Nanosized Interfacial Contact via Confined Space Effect Towards Enhanced Photocatalytic Properties[J]. ACS Sustainable Chem Eng, 2016,4(11):5936-5942. doi: 10.1021/acssuschemeng.6b00640

    11. [11]

      Zhou M J, Li J Z, Ye Z F. Transfer Charge and Energy of Ag@CdSe QDs-rGO Core-Shell Plasmonic Photocatalyst for Enhanced Visible Light Photocatalytic Activity[J]. ACS Appl Mater Interfaces, 2015,7(51):28231-28243. doi: 10.1021/acsami.5b06997

    12. [12]

      Meng F K, Li J T, Cushing S K. Solar Hydrogen Generation by Nanoscale p-n Junction of pType Molybdenum Disulfide/nType Nitrogen-Doped Reduced Graphene Oxide[J]. J Am Chem Soc, 2013,135(28):10286-10289. doi: 10.1021/ja404851s

    13. [13]

      Jing L Q, Xu Y G, Huang S Q. Novel Magnetic CoFe2O4/Ag/Ag3VO4 Composites:Highly Efficient Visible Light Photocatalytic and Antibacterial Activity[J]. Appl Catal B, 2016,199:11-22. doi: 10.1016/j.apcatb.2016.05.049

    14. [14]

      Zhao W, Guo Y, Faiz Y. Facile in situ Synthesis of Ag/AgVO3 One-Dimensional Hybrid Nanoribbons with Enhanced Performance of Plasmonic Visible-Light Photocatalysis[J]. Appl Catal B, 2015,163:288-297. doi: 10.1016/j.apcatb.2014.08.015

    15. [15]

      Wang S M, Li D L, Sun C. Synthesis and Characterization of g-C3N4/Ag3VO4 Composites with Significantly Enhanced Visible-Light Photocatalytic Activity for Triphenylmethane Dye Degradation[J]. Appl Catal B, 2014,144:885-892. doi: 10.1016/j.apcatb.2013.08.008

    16. [16]

      Zhang J F, Hu Y F, Jiang X L. Design of A Direct Z-Scheme Photocatalyst:Preparation and Characterization of Bi2O3/g-C3N4 with High Visible Light Activity[J]. J Hazard Mater, 2014,280:713-722. doi: 10.1016/j.jhazmat.2014.08.055

    17. [17]

      Dong F, Zhao Z W, Sun Y J. An Advanced Semimetal-Organic Bi Spheres-gC3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification[J]. Environ Sci Technol, 2015,49(20):12432-12440. doi: 10.1021/acs.est.5b03758

    18. [18]

      Wu X Q, Zhao J, Guo S J. Carbon Dots and BiVO4 Quantum Dots Composite for Overall Water Splitting via Two-Electron Pathway[J]. Nanoscale, 2016,8(39):17314-17321. doi: 10.1039/C6NR05864G

    19. [19]

      Moniz S J, Shevlin S A, Martin D J. Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-A Critical Review[J]. Energy Environ Sci, 2015,8(3):731-759. doi: 10.1039/C4EE03271C

    20. [20]

      Mondal S, Appalakondaiah S, Vaitheeswaran G. High Pressure Structural, Electronic, and Optical Properties of Polymorphic InVO4 Phases[J]. J Appl Phys, 2016,119(8)085702. doi: 10.1063/1.4942182

    21. [21]

      Ye L Q, Liu J Y, Gong C Q. Two Different Roles of Metallic Ag on Ag/AgX/BiOX(X=Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-Scheme Rridge[J]. ACS Catal, 2012,2(8):1677-1683. doi: 10.1021/cs300213m

    22. [22]

      Chen X J, Liu F L, Yan X D. Ag2Mo3O10 Nanorods Decorated with Ag2S Nanoparticles:Visible Light Photocatalytic Activity, Photostability, and Charge Transfer[J]. Chem-Eur J, 2015,21(51):18711-18716. doi: 10.1002/chem.201503186

    23. [23]

      Lv J L, Dai K, Zhang J F. In situ Controllable Synthesis of Novel Surface Plasmon Resonance-Enhanced Ag2WO4/Ag/Bi2MoO6 Composite for Enhanced and Stable Visible Light Photocatalyst[J]. Appl Surf Sci, 2017,391:507-515. doi: 10.1016/j.apsusc.2016.05.001

    24. [24]

      He M Q, Li W B, Xia J X. The Enhanced Visible Light Photocatalytic Activity of Yttrium-Doped BiOBr Synthesized via a Reactable Ionic Liquid[J]. Appl Surf Sci, 2015,331:170-178. doi: 10.1016/j.apsusc.2014.12.141

    25. [25]

      Ding X, Zhao K, Zhang L Z. Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions[J]. Environ Sci Technol, 2014,48(10):5823-5831. doi: 10.1021/es405714q

    26. [26]

      Li Z, Zhu L Y, Wu W. Highly Efficient Photocatalysis Toward Tetracycline under Simulated Solar-Light by Ag+-CDs-Bi2WO6:Synergistic Effects of Silver Ions and Carbon Dots[J]. Appl Catal B, 2016,192:277-285. doi: 10.1016/j.apcatb.2016.03.045

    27. [27]

      Yoon H J, Choi Y I, Jang E S. Graphene, Charcoal, ZnO, and ZnS/BiOX(X=Cl, Br, and I) Hybrid Microspheres for Photocatalytic Simulated Real Mixed Dye Treatments[J]. J Ind Eng Chem, 2015,32:137-152. doi: 10.1016/j.jiec.2015.08.010

    28. [28]

      He R G, Cao S W, Zhou P. Recent Advances in Visible Light Bi-Based Photocatalysts[J]. Chinese J Catal, 2014,35(7):989-1007. doi: 10.1016/S1872-2067(14)60075-9

    29. [29]

      Kong J J, Rui Z B, Wang X Y. Visible-Light Decomposition of Gaseous Toluene over BiFeO3-(Bi/Fe)2O3 Heterojunctions with Enhanced Performance[J]. Chem Eng J, 2016,302:552-559. doi: 10.1016/j.cej.2016.05.100

    30. [30]

      Ye L Q, Liu J Y, Jiang Z. Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Activity[J]. Appl Catal B, 2013,142/143:1-7. doi: 10.1016/j.apcatb.2013.04.058

    31. [31]

      Mamba G, Mishra A K. Graphitic Carbon Nitride(g-C3N4) Nanocomposites:A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation[J]. Appl Catal B, 2016,198:347-377. doi: 10.1016/j.apcatb.2016.05.052

    32. [32]

      Nell A, Getsoian A, Werner S. Preparation and Characterization of High-Surface-Area Bi(1-x)/3V1-xMoxO4 Catalysts[J]. Langmuir, 2014,30(3):873-880. doi: 10.1021/la403646g

    33. [33]

      Pan Z H, Hisatomi T, Wang Q. Photocatalyst Sheets Composed of Particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-Scheme Water Splitting under Visible Light[J]. ACS Catal, 2016,6(10):7188-7196. doi: 10.1021/acscatal.6b01561

  • 加载中
    1. [1]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    7. [7]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    8. [8]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    9. [9]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    12. [12]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    13. [13]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    14. [14]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    15. [15]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    19. [19]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    20. [20]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

Metrics
  • PDF Downloads(6)
  • Abstract views(270)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return