Citation: LIU Xiaofang, WANG Shengnan, XU Jian, LI Ran. Facile Preparation and Application of Fluorescent Material with High Quantum Yield[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 674-678. doi: 10.11944/j.issn.1000-0518.2018.06.170241 shu

Facile Preparation and Application of Fluorescent Material with High Quantum Yield

  • Corresponding author: LIU Xiaofang, helianthus.3436@foxmail.com
  • Received Date: 10 July 2017
    Revised Date: 11 September 2017
    Accepted Date: 31 October 2017

Figures(5)

  • A fluorescent material with high quantum yield(78%) was prepared using citric acid and triethylenetetramine as initial reagents in a facile way. The as-prepared system was characterized by ultraviolet(UV) absorption, fluorescence, Fourier transform infrared spectrometer(FTIR), nuclear magnetic resonance spectroscopy(NMR). The results show that the product belongs to a typical fluorescent material and the aggregation of a large number of carbonyl groups in the system may cause its intense fluorescence. It is confirmed that the material with high quantum yield can be an excellent fluorescent ink. This material has wide potential applications in the fields of patterning, anti-counterfeiting and optoelectronic devices.
  • 加载中
    1. [1]

      Wang Q M, Gregory G, Stephen C. Cephalopod-Inspired Design of Electro-Mechano-Chemically Responsive Elastomers for On-Demand Fluorescent Patterning[J]. Nat Commun, 2014,5:4899-4907. doi: 10.1038/ncomms5899

    2. [2]

      Chang K W, Liu Z H, Chen H B. Facile Synthesis, Macroscopic Separation, E/Z Isomerization, and Distinct AIE Properties of Pure Stereoisomers of an Oxetane-Substituted Tetraphenylethene Luminogen[J]. Small, 2014,10(18):4270-4275.  

    3. [3]

      Tang F, Peng J H, Liu R H. A Sky-Blue Fluorescent Small Molecule for Non-Doped OLED Using Solution-Processing[J]. RSC Adv, 2015,5(87):71419-71424. doi: 10.1039/C5RA14362D

    4. [4]

      Marta K, Antonios K, Panagiotis D. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission[J]. J Am Chem Soc, 2012,134(2):747-750. doi: 10.1021/ja204661r

    5. [5]

      Wiktor, Szczepan, Dariusz. Luminescence Phenomena of Biodegradable Photoluminescent Poly(diol citrates)[J]. Chem Commun, 2013,49(57):6445-6447. doi: 10.1039/c3cc42661k

    6. [6]

      Zhang J, Yang L, Yuan Y. One-Pot Gram-Scale Synthesis of Nitrogen and Sulfur Embedded Organic Dots with Distinctive Fluorescence Behaviors in Free and Aggregated States[J]. Chem Mater, 2016,28(12):4367-4374. doi: 10.1021/acs.chemmater.6b01360

    7. [7]

      Zhu S J, Meng Q N, Wang L. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew Chem Int Ed, 2013,52(14):3953-3957. doi: 10.1002/anie.v52.14

    8. [8]

      Dong Y Q, Pang H C, Yang H B. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission[J]. Angew Chem Int Ed, 2013,52(30):7800-7804. doi: 10.1002/anie.v52.30

    9. [9]

      Song Y B, Zhu S J, Zhang S T. Investigation from Chemical Structure to Photoluminescent Mechanism:A Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine[J]. J Mater Chem C, 2015,3(23):5976-5984. doi: 10.1039/C5TC00813A

    10. [10]

      Lin Y, Gao J W, Liu H W. Synthesis and Characterization of Hyperbranched Poly(ether amide)s with Thermoresponsive Property and Unexpected Strong Blue Photoluminescence[J]. Macromolecules, 2009,42(9):3237-3246. doi: 10.1021/ma802353f

    11. [11]

      Qin A J, Jacky L, Tang B Z. Luminogenic Polymers with Aggregation-Induced Emission Characteristics[J]. Prog Polym Sci, 2012,37(1):182-209. doi: 10.1016/j.progpolymsci.2011.08.002

    12. [12]

      Zhao E G, Jacky L, Meng L M. Poly[(maleic anhydride)-alt-(vinyl acetate)]:A Pure Oxygenic Nonconjugated Macromolecule with Strong Light Emission and Solvatochromic Effect[J]. Macromolecules, 2015,48(1):64-71. doi: 10.1021/ma502160w

    13. [13]

      Lu H, Feng L L, Li S S. Unexpected Strong Blue Photoluminescence Produced from the Aggregation of Unconventional Chromophores in Novel Siloxane-Poly(amidoamine) Dendrimers[J]. Macromolecules, 2015,48(3):476-482. doi: 10.1021/ma502352x

    14. [14]

      Sun B, Zhao B, Wang D D. Fluorescent Non-Conjugated Polymer Dots for Targeted Cell Imaging[J]. Nanoscale, 2016,8(18):9837-9841. doi: 10.1039/C6NR01909A

    15. [15]

      Andrea P, Riccardo R, Francesco C. Aggregation-Induced Luminescence of Polyisobutene Succinic Anhydrides and Imides[J]. Macromol Chem Phys, 2008,209(9):900-906. doi: 10.1002/(ISSN)1521-3935

    16. [16]

      Mei J, Hong Y M, Jacky L. Aggregation-Induced Emission:The Whole is More Brilliant than the Parts[J]. Adv Mater, 2014,26(31):5429-5479. doi: 10.1002/adma.201401356

    17. [17]

      Wu Y Y, Zhong Y L, Chu B B. Plant-derived Fluorescent Silicon Nanoparticles Featuring Excitation Wavelength-Dependent Fluorescence Spectra for Anti-counterfeiting Applications[J]. Chem Commun, 2016,52(43):7047-7050. doi: 10.1039/C6CC02872A

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    8. [8]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    17. [17]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(1)
  • Abstract views(1053)
  • HTML views(494)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return