Citation: MAO Yulu, ZHANG Xi, XU Mai, WANG Fengwu, WANG Zhicheng, FANG Wenyan, WEI Yijun, ZHU Chuangao. Preparation of Ti/TiO2 Nanotube Arrays/PbO2-Pr Electrode and Its Application in Electrocatalytic Degradation of Organic Wastewater[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 582-588. doi: 10.11944/j.issn.1000-0518.2018.05.170238 shu

Preparation of Ti/TiO2 Nanotube Arrays/PbO2-Pr Electrode and Its Application in Electrocatalytic Degradation of Organic Wastewater

  • Corresponding author: WANG Fengwu, fengwuwang@163.com
  • Received Date: 6 July 2017
    Revised Date: 8 August 2017
    Accepted Date: 1 September 2017

    Fund Project: the National Natural Science Foundation of China 21176099the Natural Science Foundation of the Anhui Higher Education Institutions of China KJ2016A670Supported by the National Natural Science Foundation of China(No.21176099), the Natural Science Foundation of the Anhui Higher Education Institutions of China(No.KJ2017ZD37, No.KJ2016A670)the Natural Science Foundation of the Anhui Higher Education Institutions of China KJ2017ZD37

Figures(7)

  • A novel Ti/TiO2 nanotube arrays(NTs)/PbO2-Pr electrode for the degradation of organic wastewater was fabricated by the pulse electrodeposition method. Pr-doped PbO2 nanoparticles were deposited on the TiO2 nanotube array substrate. Cyclic voltammetry(CV) and linear sweep voltammetry(LSV) were utilized to study the electrochemical performance of electrodes. The results demonstrate that Ti/TiO2NTs/nanoPbO2-Pr electrodes(P) possess excellent electrocatalytic properties. The morphology, crystallinity and elemental composition of Ti/TiO2NTs/nanoPbO2-Pr electrodes were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS). The β-PbO2 nanoparticles are dispersed inside the TiO2 nanotubes and the doped Pr exists in the form of Pr2O3. The degradation of methylene blue was carried out to test electrocatalytic performance of this novel electrode. A 99.8% removal of methylene blue of Ti/TiO2NTs/nanoPbO2-Pr electrode within 120 min indicates its good activity.
  • 加载中
    1. [1]

      Chen J L, Wu C C. Electrochemical Oxidation of 4-Chlorophenol with Granular Graphite Electrodes[J]. Desalination, 2010,264(1):92-96.  

    2. [2]

      Andreozzia R, Caprio V, Insola A. Advanced Oxidation Processes(AOP) for Water Purification and Recovery[J]. Catal Today, 1999,53(1):51-59. doi: 10.1016/S0920-5861(99)00102-9

    3. [3]

      Xiang Y Y, Fang J Y, Chii Shang. Kinetics and Pathways of Ibuprofen Degradation by the UV/Chlorine Advanced Oxidation Process[J]. Water Res, 2016(90):301-308.  

    4. [4]

      Zhang Y J, Tang B, Wu Z Y. Glucose Oxidation over Ultrathin Carbon-Coated Perovskite Modified TiO2 Nanotube Photonic Crystals with High-Efficiency Electron Generation and Transfer for Photoelectrocatalytic Hydrogen Production[J]. Green Chem, 2016,18(8):2424-2434. doi: 10.1039/C5GC02745D

    5. [5]

      Huang X, Shen Q, Liu J. A CO2 Adsorption-Enhanced Semiconductor/Metal-Complex Hybrid Photoelectrocatalytic Interface for Efficient Formate Production[J]. Energy Environ Sci, 2016,9(10):3161-3171. doi: 10.1039/C6EE00968A

    6. [6]

      Xu L, Liang G R, Yin M. A Promising Electrode Material Modified by Nb-doped TiO2 Nanotubes for Electrochemical Degradation of AR 73[J]. Chemosphere, 2017(173):425-434.  

    7. [7]

      WANG Canyong. The Modification of Lead Dioxide and Its Electric Catalytic Application Research[D]. Hufei: Anhui University, 2016(in Chinese).

    8. [8]

      LI Shudong. The modification of Lead Dioxide Electrode and Its Electriccatalytic Performance Research[D]. Anhui University of Science and Technology, 2013(in Chinese).

    9. [9]

      Fujishima A, Honda K. Electrochemical Photocatalysis of Water at Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    10. [10]

      Foong T R B, Shen Y, Hu X. Template-Directed Liquid ALD Growth of TiO2 Nanotube Arrays:Properties and Potential in Photovoltaic Devices[J]. Adv Funct Mater, 2010,20(9):1390-1396. doi: 10.1002/adfm.200902063

    11. [11]

      Yoriya S, Paulose M, Varghese O K. Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes[J]. J Phys Chem C, 2007,111(37):13770-13776. doi: 10.1021/jp074655z

    12. [12]

      Prakasam H E, Shankar K, Paulose M. A New Benchmark for TiO2 Nanotube Arrays Growth by Anodization[J]. J Phys Chem C, 2007,111(20):7235-7241. doi: 10.1021/jp070273h

    13. [13]

      Chen S G, Paulose M, Ruan C M. Electrochemically Synthesized CdS Nanoparticle-Modified TiO2 Nanotube-Array Photoelectrodes:Preparation, Characterization and Application to Photoelectrochemical Cells[J]. Photochem Photobiol A, 2006,177(2/3):177-184.  

    14. [14]

      ZHOU Huafeng, LIANG Dianwei, SUN Yirui. Photocatalytic Degradation of Methylene Blue over TiO2[J]. Liaoning Chem Ind, 2016,45(3):288-290.  

    15. [15]

      Cao J L, Zhao H Y, Cao F H. Electrocatalytic Degradation of 4-Chlorophenol on F-Doped PbO2 Anodes[J]. Electrochim Acta, 2009,54(9):2595-2602. doi: 10.1016/j.electacta.2008.10.049

    16. [16]

      Li G T, Qu J H, Zhang X W. Electrochemically Assisted Photocatalytic Degradation of Acid Orange 7 with β-PbO2 Electrodes Modified by TiO2[J]. Water Res, 2006,40(2):213-220. doi: 10.1016/j.watres.2005.10.039

    17. [17]

      Liu Y, Liu H, Ma J. Preparation and Electrochemical Properties of Ce-Ru-SnO2 Ternary Oxide Anodeand Electrochemical Oxidation of Nitrophenols[J]. J Hazard Mater, 2012(213):222-229.  

    18. [18]

      JIANG Hongquan, WANG Peng, CHEN Hongyan. Surface Properties and Photocatalytic Activity of Pr3+-Doped TiO2 Nano-Powders[J]. Photogr Sci Photochem, 2006,24(4):276-285. doi: 10.7517/j.issn.1674-0475.2006.04.276

    19. [19]

      Cui Y H, Feng Y J, Liu J. Comparison of Various Organic Compounds Destruction on Rare Earths Doped Ti/Sb-SnO2 Electrodes[J]. J Hazard Mater, 2012,239/240(4):225-232.  

    20. [20]

      Zhang W, Lin H, Kong H. Preparation and Characterization of Lead Dioxide Electrode with Three-Dimensional Porous Titanium Substrate for Electrochemical Energy Storage[J]. Electrochim Acta, 2014,139(26):209-216.  

    21. [21]

      Cao H, Lu D, Lin J. Novel Sb-doped Ruthenium Oxide Electrode with Ordered Nanotube Structure and Its Elctrocatalytic Activity Toward Chlorine Evolution[J]. Electrochim Acta, 2013,91(3):234-239.  

    22. [22]

      Pei L, Yang M, Zhang D. Photoelectrochemical Activities and Low Content Nb-doping Effects on One-Dimensional Self-Ordered Nb2O5-TiO2 Nanotubes[J]. RSC Adv, 2015,5(12):9138-9142. doi: 10.1039/C4RA12180E

    23. [23]

      Escobar M A M, Pathak S, Liu J W. ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells[J]. ACS Appl Mater Interfaces, 2017,9(3):2342-2349. doi: 10.1021/acsami.6b12509

  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(1)
  • Abstract views(801)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return