Citation: LIU Jiajia, XIE Yicheng, XU Hujun. Synthesis and Properties of a Cationic Gemini Asphalt Emulsifier[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 552-558. doi: 10.11944/j.issn.1000-0518.2018.05.170146 shu

Synthesis and Properties of a Cationic Gemini Asphalt Emulsifier

  • Corresponding author: XU Hujun, xu6209@163.com
  • Received Date: 8 May 2017
    Revised Date: 27 June 2017
    Accepted Date: 30 August 2017

    Fund Project: Supported by the Jiangsu Provincial Prospective Joint Research Project of Industry-Academy-Research(No.BY2015019-35)the Jiangsu Provincial Prospective Joint Research Project of Industry-Academy-Research BY2015019-35

Figures(6)

  • A cationic Gemini asphalt emulsifier with benzene ring(symbolized as G-T) was synthesized with aniline, epichlorohydrin and N, N-dimethyltetradecylamine by two steps. The product was characterized by Fourier transform infrared spectroscopy(FT-IR), mass spectroscopy, and proton nuclear magnetic resonance(1H NMR) spectroscopy. The Krafft point, emulsifying power and performance of emulsified asphalt were studied. The critical micelle concentration(cmc) and surface tension(γcmc) of G-T were measured from 25℃ to 40℃ and thermodynamic parameters of the micellization were calculated. The results show that the Krafft point of G-T is below 0℃, and the stable time of the emulsified liquid is up to 309 s. The cmc and γcmc are 1.269×10-3 mol/L and 38.33 mN/m at 25℃, respectively. With the rise of temperature, the cmc increases, the γcmc decreases, the maximum surface adsorption capacity(Γmax) decreases and the minimum molecule area(Amin) increases. Emulsified asphalt test shows that G-T is a slow-crack asphalt emulsifier. The prepared emulsified asphalt meets the technical specifications of micro-surfacing.
  • 加载中
    1. [1]

      Zana R. Gemini(dimeric) Surfactants[J]. Curr Opin Colloid Interface Sci, 1996,1(1):566-571.  

    2. [2]

      Menger F M, Keiper J S, Azov V. Gemini Surfactants with Acetylenic Spacers[J]. Langmuir, 2000,16(5):2062-2067. doi: 10.1021/la9910576

    3. [3]

      ZHAO Jianxi. A New Generation of Surfactants:Geminis[J]. Prog Chem, 1999,11(4):348-357.  

    4. [4]

      Caillier L, Givenchy E, Levy R. Polymerizable Semi-fluorinated Gemini Surfactants Designed for Antimicrobial Materials[J]. J Colloid Interface Sci, 2009,332(1):201-207. doi: 10.1016/j.jcis.2008.12.038

    5. [5]

      SUI Zhihui, LIN Guanfa, ZHU Youyi. The Preparation, Application and Development of Surfactants for Tertiary Oil Recovery[J]. Chem Ind Eng Prog, 2003,22(4):355-360.  

    6. [6]

      SHI Laishun, WAN Zhongyi, WANG Zhongyan. Synthesis and Properties of New Gemini Cationic Asphalt Emulsifier[J]. J Shandong Univ, 2007,37(3):122-126.  

    7. [7]

      SHI Laishun, ZHAO Yafeng, ZHANG Qingli. Synthesis and Properties of Gemini Cationic Asphalt Emulsifier[J]. Pet Asphalt, 2010,24(6):66-71.  

    8. [8]

      SHI Hang. Synthesis and Characterization of Novel Gemini Cationic Asphalt Emulsifier[J]. Chem Intermed, 2012(11):58-60.  

    9. [9]

      HU Zengfu. Production and Application of Emulsified Asphalt for Road[M]. Beijing:China Communications Press, 2012(in Chinese).

    10. [10]

      Bales B L, Benrraou M, Zana R. Krafft Temperature and Micelle Ionization of Aqueous Solutions of Cesium Dodecyl Sulfate[J]. J Phys Chem B, 2002,106(35):9033-9035. doi: 10.1021/jp021297l

    11. [11]

      Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities[J]. J Org Chem, 1997,62(21):7512-7515. doi: 10.1021/jo971176v

    12. [12]

      Zana R. Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) Surfactants:Ⅱ.Krafft Temperature and Melting Temperature[J]. J Colloid Interface Sci, 2002,252(1):259-261. doi: 10.1006/jcis.2002.8457

    13. [13]

      Zieliński R, Ikeda S, Nomura H. Effect of Temperature on Micelle Formation in Aqueous Solutions of Alkyltrimethylammonium Bromides[J]. J Colloid Interface Sci, 1989,129(1):175-184. doi: 10.1016/0021-9797(89)90428-1

    14. [14]

      Di M A, Brinchi L, Di P P. Effect of Head Group Size, Temperature and Counterion Specificity on Cationic Micelles[J]. J Colloid Interface Sci, 2011,358(1):160-166. doi: 10.1016/j.jcis.2010.12.028

    15. [15]

      Ministry of Communications Highway Science Research Institute. Technical Guide for Micro-surfacing and Slurry Seal[M]. Beijing:China Communications Press, 2006(in Chinese).

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    3. [3]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    4. [4]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(5)
  • Abstract views(2748)
  • HTML views(1375)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return