Citation: QUAN Jingjing, QIN Dongdong, TAO Chunlan, HE Caihua, LI Yang, WANG Qiuhong, LU Xiaoquan. Preparation and Photoelectrochemical Properties of Au Nanorods/Graphite Phase Carbon Nitride Composites[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 574-581. doi: 10.11944/j.issn.1000-0518.2018.05.170139 shu

Preparation and Photoelectrochemical Properties of Au Nanorods/Graphite Phase Carbon Nitride Composites

  • Corresponding author: LU Xiaoquan, luxq@nwnu.edu.cn
  • Received Date: 27 April 2017
    Revised Date: 19 May 2017
    Accepted Date: 8 June 2017

    Fund Project: the National Natural Science Foundation of China 21327005Supported by the National Natural Science Foundation of China(No.21575115, No.21327005), the Program for Chang Jiang Scholars and Innovative Research Team, Ministry of Education, China(No.IRT-16R61)the National Natural Science Foundation of China 21575115the Program for Chang Jiang Scholars and Innovative Research Team, Ministry of Education, China IRT-16R61

Figures(6)

  • Graphite phase carbon nitride(g-C3N4), a new type and non-metallic organic semiconductor material has attracted widespread attention in the photocatalysis area. In this paper, we combined a seed-mediated growth way with one pot method to synthesize Au nanorods/g-C3N4 composites to improve its photoelectrochemical properties. The results demonstrate that Au nanorods can decrease the recombination rate of photogenerated carriers. Therefore, the composites present excellent photoelectrochemical properties, and the photocurrent density can reach 17.18 μA/cm2(vs RHE)which is 2.5 times higher than that of pristine samples.
  • 加载中
    1. [1]

      Man M K L, Margiolakis A, Deckoff-Jones S. Imaging the Motion of Electrons Across Semiconductor Heterojunctions[J]. Nat Nano Technol, 2017,12(1):36-40.  

    2. [2]

      Ma X G, Lv Y H, Xu J. A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements:A First-Principles Study[J]. J Phys Chem C, 2012,116(44):23485-23493. doi: 10.1021/jp308334x

    3. [3]

      Wang F, Ng W K H, Jimmy C Y. Red Phosphorus:An Elemental Photocatalyst for Hydrogen Formation from Water[J]. Appl Catal B-Environ, 2012,111:409-414.  

    4. [4]

      Ong W J, Tan L L, Ng Y H. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer to Achieving Sustainability?[J]. Chem Rev, 2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075

    5. [5]

      Zhang Y J, Mori T, Ye J H. Polymeric Carbon Nitrides:Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion[J]. Sci Adv Mater, 2012,4:282-291. doi: 10.1166/sam.2012.1283

    6. [6]

      Lou S, Zhou Z, Shen Y. Comparison Study of the Photoelectrochemical Activity of Carbon Nitride with Different Photoelectrode Configurations[J]. ACS Appl Mater Interfaces, 2016,8(34):22287-22294. doi: 10.1021/acsami.6b09699

    7. [7]

      Zhou Z, Shen Y, Li Y. Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction[J]. ACS Nano, 2015,9(12):12480-12487. doi: 10.1021/acsnano.5b05924

    8. [8]

      Liu J H, Zhang T K, Wang Z C. Simple Pyrolysis of Urea into Graphitic Carbon Nitride With Recyclable Adsorption and Photocatalytic Activity[J]. J Mater Chem A, 2011,21(38):14398-14401. doi: 10.1039/c1jm12620b

    9. [9]

      Dong F, Sun Y J, Wu L W. Facile Transformation of Low Cost Thiourea into Nitrogen-Rich Graphitic Carbon Nitride Nanocatalyst with High Visible Light Photocatalytic Performance[J]. Catal Sci Technol, 2012,2(7):1332-1335. doi: 10.1039/c2cy20049j

    10. [10]

      Hou Y, Wen Z, Cui S. Strongly Coupled Ternary Hybrid Aerogels of N-Deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation[J]. Nano Lett, 2016,16(4):2268-2277. doi: 10.1021/acs.nanolett.5b04496

    11. [11]

      Xu H, Yan J, Xu Y G. Novel Visible Light Driven AgX/Graphite-like C3N4(X=Br, I) Hybrid Materials with Synergistic Photocatalytic Activity[J]. Appl Catal B-Environ, 2013,129:182-193. doi: 10.1016/j.apcatb.2012.08.015

    12. [12]

      Liu J, Zhang Y, Lu L. Self-Regenerated Solar-Driven Photocatalytic Water-Splitting by Urea Derived Graphitic Carbon Nitride with Platinum Nanoparticles[J]. Chem Commun, 2012,48(70):8826-8828. doi: 10.1039/c2cc33644h

    13. [13]

      Pany S, Naik B, Martha S. Plasmon Induced Nano Au Particle Decorated over S, N-Modified TiO2 for Exceptional Photocatalytic Hydrogen Evolution under Visible Light[J]. ACS Appl Mater Interfaces, 2014,6(2):839-846. doi: 10.1021/am403865r

    14. [14]

      Guo Y, Chu S, Yan S C. Developing a Polymeric Semiconductor Photocatalyst with Visible Light Response[J]. Chem Commun, 2010,46(39):7325-7327. doi: 10.1039/c0cc02355h

    15. [15]

      Wang H J, Yang K H, Hsu S C. Photothermal Effects from Au Cu2O Core Shell Nanocubes, Octahedra, and Nanobars with Broad Near-Infrared Absorption Tunability[J]. Nanoscale, 2016,8(2):965-972. doi: 10.1039/C5NR06847A

    16. [16]

      Lou Z, Fujitsuka M, Majima T. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation[J]. J Phys Chem Lett, 2017,8(4):844-849. doi: 10.1021/acs.jpclett.6b03045

    17. [17]

      Brus L. Noble Metal Nanocrystals:Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy[J]. Acc Chem Res, 2008,41(12):1742-1749. doi: 10.1021/ar800121r

    18. [18]

      Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering[J]. Science, 1997,275(5303):1102-1106. doi: 10.1126/science.275.5303.1102

    19. [19]

      Jain P K, Huang X, El-Sayed I H. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine[J]. Acc Chem Res, 2008,41(12):1578-1586. doi: 10.1021/ar7002804

    20. [20]

      Atwater H A, Polman A. Plasmonics for Improved Photovoltaic Devices[J]. Nat Mater, 2010,9(3):205-213. doi: 10.1038/nmat2629

    21. [21]

      Liang W B, Church T L, Harris A T. Biogenic Synthesis of Photocatalytically Active Ag/TiO2 and Au/TiO2 Composites[J]. Green Chem, 2012,14:968-975. doi: 10.1039/c2gc16082j

    22. [22]

      Tian K, Liu W J, Jiang H. Comparative Investigation on Photoreactivity and Mechanism of Biogenic and Chemosythetic Ag/C3N4 Composites under Visible Light Irradiation[J]. ACS Sustain Chem Eng, 2015,3(2):269-276. doi: 10.1021/sc500646a

    23. [23]

      Niu W X, Zheng S L, Wang D W. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals[J]. J Am Chem Soc, 2008,131(2):697-703.  

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    18. [18]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

Metrics
  • PDF Downloads(2)
  • Abstract views(891)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return