Citation: CHEN Fan, GUO Zhiqian, ZHU Weihong. Synthesis and Characterization of pH and Temperature Sensitive Polymeric Fluorescent Probe[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 401-409. doi: 10.11944/j.issn.1000-0518.2018.04.170463 shu

Synthesis and Characterization of pH and Temperature Sensitive Polymeric Fluorescent Probe

  • Corresponding author: GUO Zhiqian, guozq@ecust.edu.cn
  • Received Date: 21 December 2017
    Revised Date: 24 January 2018
    Accepted Date: 24 January 2018

    Fund Project: the National Natural Science Foundation of China 21325625Supported by the National Natural Science Foundation of China(No.21622602, No.21325625)the National Natural Science Foundation of China 21622602

Figures(7)

  • A pH and thermo-responsive fluorescent polymeric sensor Poly(POSS-NI-NIPAM) was synthesized from naphthalimide(NI), N-isopropyl acrylamide(NIPAM) and polyhedral oligomeric silsesquioxane(POSS) as raw materials by the reversible addition-fragmentation chain transfer polymerization(RAFT). The pH and thermo-responsive properties of Poly(POSS-NI-NIPAM) were characterized by nuclear magnetic resonance spectroscopy(NMR), fluorescence emission spectrometer and mass spectrometry(MS). The results show that Poly(POSS-NI-NIPAM) shows obvious fluorescence changes in the range of pH 5.8~8.0 with a reversible performance. The high sensitivity for pH/temperature makes Poly(POSS-NI-NIPAM) as a promising fluorescent probe for the detection of intracellular pH/temperature in living cells.
  • 加载中
    1. [1]

      Cordes D B, Lickiss P D, Rataboul F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes[J]. Chem Rev, 2010,110(4):2081-2173. doi: 10.1021/cr900201r

    2. [2]

      Mai Y Y, Eisenberg A. Self-assembly of Block Copolymers[J]. Chem Soc Rev, 2012,41(18):5969-5985. doi: 10.1039/c2cs35115c

    3. [3]

      Huang M J, Hsu C H, Wang J. Selective Assemblies of Giant Tetrahedra via Precisely Controlled Positional Interactions[J]. Science, 2015,348(6233):424-428. doi: 10.1126/science.aaa2421

    4. [4]

      Zhang Z H, Hong L Z, Li J X. One-pot Synthesis of Well-defined Amphiphilic Alternating Copolymer Brushes Based on POSS and Their Self-assembly in Aqueous Solution[J]. RSC Adv, 2015,5(28):21580-21587. doi: 10.1039/C4RA15492D

    5. [5]

      Du F F, Tian J, Wang H. Synthesis and Luminescence of POSS-Containing Perylene Bisimide-Bridged Amphiphilic Polymers[J]. Macromolecules, 2012,45(7):3086-3093. doi: 10.1021/ma300100s

    6. [6]

      Ni B, Huang M, Chen Z. Pathway Toward Large Two-dimensional Hexagonally Patterned Colloidal Nanosheets in Solution[J]. J Am Chem Soc, 2015,137(4):1392-1395. doi: 10.1021/ja511694a

    7. [7]

      Wang X, Yang Y Y, Gao P Y. Synthesis, Self-Assembly, and Photoresponsive Behavior of Tadpole-Shaped Azobenzene Polymers[J]. ACS Macro Lett, 2015,4(12):1321-1326. doi: 10.1021/acsmacrolett.5b00698

    8. [8]

      Li D, Niu Y, Yang Y. Synthesis and Self-assembly Behavior of POSS-embedded Hyperbranched Polymers[J]. Chem Commun, 2015,51(39):8296-8299. doi: 10.1039/C5CC01338K

    9. [9]

      Wang X, Yang Y, Gao P. POSS Dendrimers Constructed from a 1→7 Branching Monomer[J]. Chem Commun, 2014,50(46):6126-6129. doi: 10.1039/c4cc01859a

    10. [10]

      Tanaka K Z, Chujo Y. Advanced Functional Materials Based on Polyhedral Oligomeric Silsesquioxane(POSS)[J]. J Mater Chem, 2012,22(5):1733-1746. doi: 10.1039/C1JM14231C

    11. [11]

      Ma L, Geng H, Song J. Hierarchical Self-assembly of Polyhedral Oligomeric Silsesquioxane End-capped Stimuli-responsive Polymer:From Single Micelle to Complex Micelle[J]. J Phys Chem B, 2011,115(36):10586-10591. doi: 10.1021/jp203782g

    12. [12]

      Zhang Z H, Xue Y D, Zhang P C. Hollow Polymeric Capsules from POSS-Based Block Copolymer for Photodynamic Therapy[J]. Macromolecules, 2016,49(22):8440-8448. doi: 10.1021/acs.macromol.6b02414

    13. [13]

      Zhang Q L, Vancoillie G, Mees M A. Thermo-responsive Polymeric Temperature Sensors with Broad Sensing Regimes[J]. Polym Chem-UK, 2015,6(13):2396-2400. doi: 10.1039/C4PY01747A

    14. [14]

      Zhou S, Min X, Dou H. Facile Fabrication of Dextran-based Fluorescent Nanogels as Potential Glucose Sensors[J]. Chem Commun, 2013,49(82):9473-9475. doi: 10.1039/c3cc45668d

    15. [15]

      Car A, Baumann P, Duskey J T. pH-responsive PDMS-b-PDMAEMA Micelles for Intracellular Anticancer Drug Delivery[J]. Biomacromolecules, 2014,15(9):3235-3245. doi: 10.1021/bm500919z

    16. [16]

      Li Y Y, Jiang X Q, Zhang M. A Visual and Reversible Assay for Temperature Using Thioflavin T-doped Lanthanide/Nucleotide Coordination Polymers[J]. Analyst, 2016,141(8):2347-2350. doi: 10.1039/C6AN00274A

    17. [17]

      QIANG Xinxin, ZHAO Zhichao, SONG Fengling. Preparation of Fluorescent Ultrafine Polymer Nanoparticles[J]. Chinese J Appl Chem, 2012,29(6):633-638.  

    18. [18]

      Chu J, Lv Q L, Guo C L. One-Step Preparation of Branched PEG Functionalized AIE-active Luminescent Polymeric Nanoprobes[J]. Sci China Chem, 2016,59(8):1003-1009. doi: 10.1007/s11426-016-5578-z

    19. [19]

      Hammerer F, Garcia G, Charles P. Glycoconjugated Porphyrin Dimers as Robust Ratiometric Temperature Sensors[J]. Chem Commun, 2014,50(67):9529-9532. doi: 10.1039/C4CC03367A

    20. [20]

      Chen L, Wu J, Schmuck C. A Switchable Peptide Sensor for Real-time Lysosomal Tracking[J]. Chem Commun, 2014,50(49):6443-6446. doi: 10.1039/C4CC00670D

    21. [21]

      ZHOU Qiuxuan, GU Peiyang, LU Jianmei. Synthesis and Fluorescence of a New pH-Sensitive Pyran Nitrile Derivatives[J]. Chinese J Appl Chem, 2013,30(5):506-510.  

    22. [22]

      HE Ye, TANG Junma, GUO Zhiqian. A FRET Fluorescent Probe for A-Ketoglutaric Acid Based on Rhodamine and BODIPY[J]. Imaging Sci Photochem, 2017,35(3):265-273. doi: 10.7517/j.issn.1674-0475.2017.03.265

    23. [23]

      Zheng Z B, Wu Y Q, Wang K Z. pH Luminescence Switching, Dihydrogen Phosphate Sensing, and Cellular Uptake of a Heterobimetallic Ruthenium(Ⅱ)-Rhenium(Ⅰ) Complex[J]. Dalton T, 2014,43(8):3273-3284. doi: 10.1039/C3DT52568F

    24. [24]

      Xue Y, Liang W, Li Y. Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging[J]. J Agric Food Chem, 2016,64(51):9592-9600. doi: 10.1021/acs.jafc.6b04583

    25. [25]

      Hou J R, Jin D, Chen B. Two Near-infrared Highly Sensitive Cyanine Fluorescent Probes for pH Monitoring[J]. Chinese Chem Lett, 2017,28(8):1681-1687. doi: 10.1016/j.cclet.2017.03.037

    26. [26]

      Wallabregue A, Moreau D, Sherin P. Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe[J]. J Am Chem Soc, 2016,138(6):1752-1755. doi: 10.1021/jacs.5b09972

    27. [27]

      Hu B B, Lu P, Wang Y G. Fluorescent Chemosensors Based on 9-Cycloheptatrienylidene Fluorenes(9-CHFs)[J]. New J Chem, 2013,37(6):1645-1653. doi: 10.1039/c2nj41063j

    28. [28]

      Sun R, Liu X D, Xun Z. A Rosamine-based Red-emitting Fluorescent Sensor for Detecting Intracellular pH in Live Cells[J]. Sens Actuators B, 2014,201:426-432. doi: 10.1016/j.snb.2014.04.102

    29. [29]

      Wen J, Xia P Y, Zheng Z M. Naphthalimide-rhodamine Based Fluorescent Probe for Ratiometric Sensing of Cellular pH[J]. Chinese Chem Lett, 2017,28(10):2005-2008. doi: 10.1016/j.cclet.2017.09.014

    30. [30]

      Yin L Y, He C S, Huang C. A Dual pH and Temperature Responsive Polymeric Fluorescent Sensor and Its Imaging Application in Living Cells[J]. Chem Commun, 2012,48(37):4486-4488. doi: 10.1039/c2cc30404j

    31. [31]

      Saha B, Bauri K, Bag A. Conventional Fluorophore-free Dual pH-and Thermo-responsive Luminescent Alternating Copolymer[J]. Polym Chem-UK, 2016,7(45):6895-6900. doi: 10.1039/C6PY01738J

    32. [32]

      Zhang Q L, Vanparijs N, Louage B. Dual pH-and Temperature-responsive RAFT-based Block Co-polymer Micelles and Polymer-Protein Conjugates with Transient Solubility[J]. Polym Chem-UK, 2014,5(4):1140-1144. doi: 10.1039/C3PY00971H

    33. [33]

      Yuan F, Ding L, Li Y. Multicolor Fluorescent Graphene Quantum Dots Colorimetrically Responsive to All-pH and a Wide Temperature Range[J]. Nanoscale, 2015,7(27):11727-11733. doi: 10.1039/C5NR02007G

    34. [34]

      Shen L J, Zhu W H, Meng X L. A Hydrophilic Fluorescent Polymer Containing Naphthalimide Moiety as Chemosensor for Microbioreactors[J]. Sci China Chem, 2009,52(6):821-826. doi: 10.1007/s11426-009-0038-7

    35. [35]

      Liu B Y, Wu W X, Wang N. Novel Biocompatible Fluorescent Polymeric Micelles Based on 1, 8-Naphthalimide Derivatives for Cell Imaging[J]. Polym Chem-UK, 2015,6(3):364-368. doi: 10.1039/C4PY01212G

    36. [36]

      Tian Y, Su F, Weber W. A Series of Naphthalimide Derivatives as Intra and Extracellular pH Sensors[J]. Biomaterials, 2010,31(29):7411-7422. doi: 10.1016/j.biomaterials.2010.06.023

    37. [37]

      Bao Y Y, De K H, Corneillie S. Tunable Ratiometric Fluorescence Sensing of Intracellular pH by Aggregation-Induced Emission-Active Hyperbranched Polymer Nanoparticles[J]. Chem Mater, 2015,27(9):3450-3455. doi: 10.1021/acs.chemmater.5b00858

    38. [38]

      YE De, LI Najun, LU Jianmei. Fluorescent Properties of Two Vinyl Monomers Containing 1, 8-Naphthalimide Segments and Their Homopolymers[J]. Chinese J Appl Chem, 2009,26(8):929-934.  

    39. [39]

      Guo Z Q, Zhu W H, Xong Y Y. Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyranMoiety[J]. Macromolecules, 2009,42(5):1448-1453. doi: 10.1021/ma802660e

    40. [40]

      Jiang Y N, Yang X D, Ma C. Interfacing a Tetraphenylethene Derivative and a Smart Hydrogel for Temperature-dependent Photoluminescence with Sensitive Thermoresponse[J]. ACS Appl Mater Interfaces, 2014,6(7):4650-4657. doi: 10.1021/am501106x

    41. [41]

      Juan Q, Mu X Y, Qi L. Construction of Fluorescent Polymeric Nano-thermometers for Intracellular Temperature Imaging:A Review[J]. Biosens Bioelectron, 2016,85(15):403-413.  

    42. [42]

      Inal S, Kölsch J D, Sellrie F. A Water Soluble Fluorescent Polymer as a Dual Colour Sensor for Temperature and a Specific Protein[J]. J Mater Chem B, 2013,1(46):6373-6381. doi: 10.1039/c3tb21245a

    43. [43]

      Inal S, Kölsch J D, Chiappisi L. Structure-related Differences in the Temperature-regulated Fluorescence Response of LCST Type Polymers[J]. J Mater Chem C, 2013,1(40):6603-6612. doi: 10.1039/c3tc31304b

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    16. [16]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    19. [19]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    20. [20]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

Metrics
  • PDF Downloads(4)
  • Abstract views(614)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return