Citation: LIU Xin, PENG Lilan, FENG Pengyuan, ZHANG Yang, DENG Ruiping, PENG Zeping. Morphology Control of Cuprous Oxide Micro-and Nanoparticles by Polyol Method[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 469-476. doi: 10.11944/j.issn.1000-0518.2018.04.170111 shu

Morphology Control of Cuprous Oxide Micro-and Nanoparticles by Polyol Method

  • Corresponding author: PENG Zeping, zppeng@swu.edu.cn
  • Received Date: 13 April 2017
    Revised Date: 15 May 2017
    Accepted Date: 26 June 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21101128), the Start-up Grant from Southwest University(No.SWU111010)the Start-up Grant from Southwest University SWU111010the National Natural Science Foundation of China 21101128

Figures(5)

  • Cu2O micro-and nanoparticles with different morphologies(cube, microsphere, hollow sphere and core-shell) were prepared by polyol method, using copper nitrate, copper acetate, and copper acetylacetonate as raw materials. The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), high resolution TEM(HRTEM) and ultraviolet-visible(UV-Vis) spectroscopy. We investigated the influences of copper sources, reaction time, the polyol types and other conditions on the morphology of cuprous oxide. The mechanism for the formation of Cu2O in polyol process is discussed. Synthesis of cuprous oxide micro-and nanostructures with different shape can be controlled by the simple and inexpensive polyol method. This method is promising for the preparation of oxides with controlled morphologies.
  • 加载中
    1. [1]

      Xing Z, Zong X, Pan J. On the Engineering Part of Solar Hydrogen Production from Water Splitting:Photo Reactor Design[J]. Chem Eng Sci, 2013,104(18):125-146.

    2. [2]

      SONG Jimei, ZHANG Xiaoxia, JIAO Jian. Synthesis and Photocatalytic Properties of Cu2O Microcubes and Nanospheres[J]. Chinese J Appl Chem, 2010,27(11):1329-1333.  

    3. [3]

      Yang C, Wang J, Mei L. Enhanced Photocatalytic Degradation of Rhodamine B by Cu2O Coated Silicon Nanowire Arrays in Presence of H2O2[J]. J Mater Sci Technol, 2014,30(11):1124-1129. doi: 10.1016/j.jmst.2014.03.023

    4. [4]

      Jiang T, Xie T, Yang W. Photoelectrochemical and Photovoltaic Properties of P-N Cu2O Homo Junction Films and Their Photocatalytic Performance[J]. J Phys Chem C, 2013,117(9):4619-4624. doi: 10.1021/jp311532s

    5. [5]

      Hara M, Hasei H, Yashima M. Mechano-Catalytic Overall Water Splitting(Ⅱ) Nafion-Deposited Cu2O[J]. Appl Catal A, 2000,190(1/2):35-42.

    6. [6]

      Marin A T, Muñoz-Rojas D, Iza D C. Novel Atmospheric Growth Technique to Improve Both Light Absorption and Charge Collection in ZnO/Cu2O Thin Film Solar Cells[J]. Adv Funct Mater, 2013,23(27):3413-3419. doi: 10.1002/adfm.v23.27

    7. [7]

      Chen W, Li L L, Li Y D. Polyol Synthesis and Chemical Conversion of Cu2O Nanospheres[J]. Nano Res, 2012,5(5):320-326. doi: 10.1007/s12274-012-0212-7

    8. [8]

      Lin J, Shang Y, Guo L. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle[J]. Adv Mater, 2017,29(5)160479.

    9. [9]

      Goyal A, Reddy A L M, Ajayan P M. Flexible Carbon Nanotube Cu2O Hybrid Electrodes for Li-Ion Batteries[J]. Small, 2011,7(12):1709-1713. doi: 10.1002/smll.v7.12

    10. [10]

      Hu L, Huang Y, Zhang F. CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale, 2013,5(10):4186-4190. doi: 10.1039/c3nr00623a

    11. [11]

      GUO Lin, SUN Du, YIN Penggang. Synthesis and Raman Property of Porous Jujube-Like Cu2O Hierarchy Structure[J]. Acta Phys Chim Sin, 2011,27(6):1543-1550.  

    12. [12]

      Yao K X, Yin X M, Wang T H. Synthesis Self-Assembly Disassembly and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes[J]. J Am Chem Soc, 2010,132(17):6131-6144. doi: 10.1021/ja100151f

    13. [13]

      Marce S, Luo J S, Michael G. Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2Reduction[J]. J Am Chem Soc, 2016,138(6):1938-1946. doi: 10.1021/jacs.5b12157

    14. [14]

      Wang W Z, Wang G H, Wang X S. Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route[J]. Adv Mater, 2002,14(1):67-69. doi: 10.1002/(ISSN)1521-4095

    15. [15]

      Tan Y.W, Xue X Y, Peng Q. Controllable Fabrication and Electrical Performance of Single Crystalline Cu2O Nanowires with High Aspect Rations[J]. Nano Lett, 2007,7(12):3723-3728. doi: 10.1021/nl0721259

    16. [16]

      Zhang J T, Liu J F, Peng Q. Nearly Monodisperse Cu2O and CuO Nanospheres:Preparation and Application for Sensitive Gas Sensors[J]. Chem Mater, 2006,18(4):867-871. doi: 10.1021/cm052256f

    17. [17]

      Pang M L, Zeng H C. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalco Genide Derivatives[J]. Langmuir, 2010,26(8):5963-5970. doi: 10.1021/la904292t

    18. [18]

      Xu H L, Wang W Z. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J]. Angew Chem Int Ed, 2007,46(9):1489-1492. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Zhang D F, Zhang H, Guo L. Delicate Control of Crystallographic Facet-Oriented Cu2O Nanocrystals and the Correlated Adsorption Ability[J]. J Mater Chem, 2009,19(29):5220-5225. doi: 10.1039/b816349a

    20. [20]

      Chang Y, Zeng H C. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals[J]. Cryst Growth Des, 2004,4(2):273-278. doi: 10.1021/cg034146w

    21. [21]

      Li H, Liu R, Zhao R X. Morphology Control of Electrodeposited Cu2O Crystals in Aqueous Solutions Using Room Temperature Hydrophilic Ionic Liquids[J]. Cryst Growth Des, 2006,6(12):2795-2798. doi: 10.1021/cg060403w

    22. [22]

      Li Y D, Li Y, Wang C. Preparation of Cuprous Oxide Particles of Different Crystallinity[J]. J Colloid Interface Sci, 2001,243(1):85-89. doi: 10.1006/jcis.2001.7857

    23. [23]

      Ramirez-Ortiza J, Ogura T, Acosta-Ortiz S E. A Catalytic Application of Cu2O and CuO Films Deposited Over Fiberglass[J]. Appl Surf Sci, 2001,174(3-4):177-184. doi: 10.1016/S0169-4332(00)00822-9

    24. [24]

      ZHANG Wei, XU Xiaoqing, GUO Chengyu. Low Temperature Solid-State Reaction Route to Cu2O Nano Crystaline[J]. J Qinghai Norm Univ, 2004(3):53-56.  

    25. [25]

      Wang D, Mo M, Yu D. Large-Scale Growth and Shape Evolution of Cu2O Cubes[J]. Cryst Growth Des, 2003,3(5):717-720. doi: 10.1021/cg0340547

    26. [26]

      Michael H Huang, Chu Y T, Tasi Y H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles[J]. Nanoscale, 2014,6(15):8704-8709. doi: 10.1039/C4NR02076F

    27. [27]

      Guo L F, Murphy C J. Solution-Phase Synthesis of Cu2O Nanocubes[J]. Nano Lett, 2003,3(2):231-234. doi: 10.1021/nl0258776

    28. [28]

      Pang M, Zeng H C. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalco Genide Derivatives[J]. Langmuir, 2010,26(8):5963-5970. doi: 10.1021/la904292t

    29. [29]

      Xu J, Tang Y B, Zhang W X. Fabrication of Architectures with Dual Hollow Structures:Arrays of Cu2O Nanotubes Organized by Hollow Nanospheres[J]. Cryst Growth Des, 2009,9(10):4524-4528. doi: 10.1021/cg9005339

    30. [30]

      Dong H, Chen Y C, Feldmann C. Polyol Synthesis of Nanoparticles Elements[J]. Green Chem, 2015,17(8):4107-4132. doi: 10.1039/C5GC00943J

    31. [31]

      Li B J, Cao H Q, Lu Y G. Cu2O@Reduced Graphene Oxide Composite for Removal of Contaminants from Water and Supercapacitors[J]. J Am Chem Soc, 2011,21(29):10645-10648.

    32. [32]

      Park J C, Kim Kwon J. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials[J]. Adv Mater, 2009,21(7):803-807. doi: 10.1002/adma.v21:7

    33. [33]

      Liang X D, Gao L, Ya ng. Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Oxide[J]. Adv Mater, 2009,21(20):2068-2071. doi: 10.1002/adma.v21:20

    34. [34]

      Kallum M K, Stefanos M, Sara E S. Polyvinylpyrrolidone(PVP) in Nanoparticle Synthesis[J]. Dalton Trans, 2015,44:17883-17905. doi: 10.1039/C5DT02964C

    35. [35]

      Chen L, Zhang Y, Wong C P. Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-Like or Microspheres and Their Supercapacitors Performances[J]. Sci Rep, 2015,59672. doi: 10.1038/srep09672

    36. [36]

      Lu C H, Qi L M, Yang J H. One-Pot Synthesis of Octahedral Cu2O Nanocages Via a Catalytic Solution Route[J]. Adv Mater, 2005,17(21):2562-2567. doi: 10.1002/(ISSN)1521-4095

    37. [37]

      Ma L L, Li J L, Sun S Z. Self-Assembled Cu2O Flowerlike Architecture:Polyol Synthesis, Photocatalytic Activity and Stability Under Simulated Solar Light[J]. Mater Res Bull, 2010,45(8):961-968. doi: 10.1016/j.materresbull.2010.04.009

    38. [38]

      LIU Minghui, ZHANG Lisha, JIA Zhiyong. Preparation of Nano-Cu2O Thin Films Using Modified Chemical Bath Deposition Method[J]. J Central China Norm Univ(Nat Sci), 2006,40(1):75-78.  

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    13. [13]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

Metrics
  • PDF Downloads(81)
  • Abstract views(3862)
  • HTML views(1965)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return