Citation: MA Hao, LIAO Chunyan, FAN Meilin, LIU Xue'en, TENG Junjiang, LI Ning. Dissolution of Cellulose in Carboxylate-Based Task-Specific Ionic Liquids[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 449-456. doi: 10.11944/j.issn.1000-0518.2018.04.170108 shu

Dissolution of Cellulose in Carboxylate-Based Task-Specific Ionic Liquids

  • Corresponding author: TENG Junjiang, 953951162@qq.com
  • Received Date: 12 April 2017
    Revised Date: 26 June 2017
    Accepted Date: 8 August 2017

    Fund Project: Supported by the Talent Introduction Program of Guangdong University of Petrochemical Technology(No.2016rc06), the Ordinary University Innovation Project of Guangdong Province, China(No.2015KTSCX091), the Students Innovation and Entrepreneurship Training Program of Guangdong University of Petrochemical Technology(No.2016pyA006)the Ordinary University Innovation Project of Guangdong Province, China 2015KTSCX091the Students Innovation and Entrepreneurship Training Program of Guangdong University of Petrochemical Technology 2016pyA006the Talent Introduction Program of Guangdong University of Petrochemical Technology 2016rc06

Figures(7)

  • Carboxylate-based task-specific ionic liquids(ILs), viz., 1, 3-dimethylimidazolium acetate([C1mim] [CH3COO]) and 1, 3-dimethylimidazolium hydroxylcarboxylate([C1mim] [HOCH2COO]), have been synthesized, and used as the solvents for cellulose dissolution. The results show that the structure of anions has a significant influence on cellulose dissolution; and at 120℃, the solubility of cellulose in[C1mim] [CH3COO] and[C1mim] [HOCH2COO] can reach up to 19.7% and 21.2%, respectively. The structure and thermal stability of pristine and regenerated celluloses were characterized by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), and thermogravimetry analysis(TGA) methods. These results demonstrate that the two ionic liquids are the direct solvent for cellulose, and also indicate that the transformation from cellulose I to amorphous cellulose occurrs after the dissolution and regeneration processes in ionic liquids. Moreover, further analysis on the degree of polymerization(DP) of regenerated cellulose shows that the dissolution temperature and time have the negative effect on cellulose DP; and higher dissolution temperature or longer dissolution time affords the lower DP of regenerated cellulose. These results may serve as guidance for developing new cellulose solvent systems in the future.
  • 加载中
    1. [1]

      Suhas , Gupta V K, Carrott P J M. Cellulose:A Review as Natural, Modified and Activated Carbon Adsorbent[J]. Bioresour Technol, 2016,216:1066-1076. doi: 10.1016/j.biortech.2016.05.106

    2. [2]

      Wang S, Lu A, Zhang L. Recent Advances in Regenerated Cellulose Materials[J]. Prog Polym Sci, 2016,53:169-206. doi: 10.1016/j.progpolymsci.2015.07.003

    3. [3]

      Klemm D, Heublein B, Fink H P. Cellulose:Fascinating Biopolymer and Sustainable Raw Material[J]. Angew Chem Int Ed, 2005,44(22):3358-3393. doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Sen S, Martin J D, Argyropoulos D S. Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates[J]. ACS Sustain Chem Eng, 2013,1(8):858-870. doi: 10.1021/sc400085a

    5. [5]

      Heinze T, Koschella A. Solvents Applied in the Field of Cellulose Chemistry:A Mini Review[J]. Polímeros, 2005,15(2):84-90. doi: 10.1590/S0104-14282005000200005

    6. [6]

      ZHANG Suojiang, LYU Xingmei. Ionic liquids:From Basic Research to Industrial Applications[M]. Beijing:Science Press, 2006(in Chinese).

    7. [7]

      Hallett J P, Welton T. Room-Temperature Ionic Liquids:Solvents for Synthesis and Catalysis.2[J]. Chem Rev, 2011,111(5):3508-3576. doi: 10.1021/cr1003248

    8. [8]

      Swatloski R P, Spear S K, Holbrey J D. Dissolution of Cellulose with Ionic Liquids[J]. J Am Chem Soc, 2002,124(18):4974-4975. doi: 10.1021/ja025790m

    9. [9]

      Remsing R C, Swatloski R P, Rogers R D. Mechanism of Cellulose Dissolution in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Chloride:A 13C and 35/37Cl NMR Relaxation Study on Model Systems[J]. Chem Commun, 2006,12(12):1271-1273.  

    10. [10]

      Pinkert A, Marsh K N, Pang S. Ionic Liquids and Their Interaction with Cellulose[J]. Chem Rev, 2009,109(12):6712-6728. doi: 10.1021/cr9001947

    11. [11]

      ZHAO Shoudian, LIU Chen, HOU Mingwang. Resrarch Process of Dissolution of Cellulose in Ionic Liquid[J]. Coal Chem Ind, 2016,39(4):25-27.  

    12. [12]

      Fukaya Y, Sugimoto A, Ohno H. Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1, 3-Dialkylimidazolium Formates[J]. Biomacromolecules, 2006,7(12):3295-3297. doi: 10.1021/bm060327d

    13. [13]

      Kosan B, Michels C, Meister F. Dissolution and Forming of Cellulose with Ionic Liquids[J]. Cellulose, 2008,15(1):59-66. doi: 10.1007/s10570-007-9160-x

    14. [14]

      Fukaya Y, Hayashi K, Wada M. Cellulose Dissolution with Polar Ionic Liquids under Mild Conditions:Required Factors for Anions[J]. Green Chem, 2008,10(1):44-46. doi: 10.1039/B713289A

    15. [15]

      Holbrey J D, Reichert W M, Tkatchenko I. 1, 3-Dimethylimidazolium-2-carboxylate:The Unexpected Synthesis of an Ionic Liquid Precursor and Carbene-CO2 Adduct[J]. Chem Commun, 2003,1(1):28-29.

    16. [16]

      Zhao B, Greiner L, Leitner W. Cellulose Solubilities in Carboxylate-based Ionic Liquids[J]. RSC Adv, 2012,2(6):2476-2479. doi: 10.1039/c2ra01224c

    17. [17]

      LUO Huimou, LI Yiqun, ZHOU Changren. Study on the Dissolution of the Cellulose in the Functionalized Ionic Liquid[J]. Polym Mater Sci Eng, 2005,21(2):233-235.  

    18. [18]

      CHEN Shouqing, TIAN Yueyun. Determination of Polymerization Degrees of Cotton Fiber by Using Ubbelohde Viscometer-Copper Ammonia Solution Method[J]. Chem Anal Meterage, 2015,24(3):79-82.  

    19. [19]

      Zhao Y, Liu X, Wang J. Effects of Anionic Structure on the Dissolution of Cellulose in Ionic Liquids Revealed by Molecular Simulation[J]. Carbohydr Polym, 2013,94(2):723-730. doi: 10.1016/j.carbpol.2013.02.011

    20. [20]

      Yuan X, Cheng G. From Cellulose Fibrils to Single Chains:Understanding Cellulose Dissolution in Ionic Liquids[J]. Phys Chem Chem Phys, 2015,17(47):31592-31607. doi: 10.1039/C5CP05744B

    21. [21]

      LI Wei, ZHANG Jing, QI Chuansong. Quantum Chemistry Calculations of Ion Cluster Models of EMIM Ionic Liquids[J]. Acta Phys Chim Sin, 2015,31(9):1690-1698. doi: 10.3866/PKU.WHXB201507071

    22. [22]

      Sarangi S S, Bhargava B L, Balasubramanian S. Nanoclusters of Room Temperature Ionic Liquids:A Molecular Dynamics Simulation Study[J]. Phys Chem Chem Phys, 2009,11(39):8745-8751. doi: 10.1039/b908339a

    23. [23]

      Tsuzuki S, Shinoda W, Saito H. Molecular Dynamics Simulations of Ionic Liquids:Cation and Anion Dependence of Self-Diffusion Coefficients of Ions[J]. J Phys Chem B, 2009,113(31):10641-10649. doi: 10.1021/jp811128b

    24. [24]

      GUO Liying, SHI Tiejun, DUAN Yanpeng. Synthesis of[AEIM]Cl and Its Dissolution of Microcrystalline Cellulose by Microwave[J]. Chinese J Appl Chem, 2009,26(9):1005-1010.  

    25. [25]

      Li Y, Liu X, Zhang S. Dissolving Process of a Cellulose Bunch in Ionic Liquids:A Molecular Dynamics Study[J]. Phys Chem Chem Phys, 2015,17(27):17894-17905. doi: 10.1039/C5CP02009C

    26. [26]

      Vitz J, Erdmenger T, Haensch C. Extended Dissolution Studies of Cellulose in Imidazolium Based Ionic Liquids[J]. Green Chem, 2009,11(3):417-424. doi: 10.1039/b818061j

    27. [27]

      Balasubramanian S. Dissolution of Cellulose in Room Temperature Ionic Liquids:Anion Dependence[J]. J Phys Chem B, 2014,119(4):1654-1659.

    28. [28]

      de Oliveira H F, Rinaldi R. Understanding Cellulose Dissolution:Energetics of Interactions of Ionic Liquids and Cellobiose Revealed by Solution Microcalorimetry[J]. Chem Sus Chem, 2015,8(9):1577-1584. doi: 10.1002/cssc.201500272

    29. [29]

      Mostofian B, Cheng X, Smith J C. Replica-Exchange Molecular Dynamics Simulations of Cellulose Solvated in Water and in the Ionic Liquid 1-Butyl-3-methylimidazolium Chloride[J]. J Phys Chem B, 2014,118(38):11037-11049. doi: 10.1021/jp502889c

    30. [30]

      Široký J, Blackburn R S, Bechtold T. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy Analysis of Crystallinity Changes in Lyocell Following Continuous Treatment with Sodium Hydroxide[J]. Cellulose, 2010,17(1):103-115. doi: 10.1007/s10570-009-9378-x

    31. [31]

      Zhang H, Wu J, Zhang J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:A New and Powerful Nonderivatizing Solvent for Cellulose[J]. Macromolecules, 2005,38(20):8272-8277. doi: 10.1021/ma0505676

    32. [32]

      Xu A, Wang J, Wang H. Effects of Anionic Structure and Lithium Salts Addition on the Dissolution of Cellulose in 1-Butyl-3-methylimidazolium-based Ionic Liquid Solvent Systems[J]. Green Chem, 2010,12(2):268-275. doi: 10.1039/B916882F

    33. [33]

      Ma H, Zhou B, Li H S. Green Composite Films Composed of Nanocrystalline Cellulose and a Cellulose Matrix Regenerated from Functionalized Ionic Liquid Solution[J]. Carbohydr Polym, 2011,84(1):383-389. doi: 10.1016/j.carbpol.2010.11.050

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    8. [8]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    13. [13]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    16. [16]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    17. [17]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    18. [18]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    19. [19]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(5)
  • Abstract views(2742)
  • HTML views(1292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return