Preparation and Application of Bisphenol-A TiO2 Gel Molecularly Imprinted Electrochemical Sensor Based on the Sensitivity-Enhancement of Gold Nanoparticles
- Corresponding author: YANG Shaoming, yangsm79@163.com
Citation:
LI Lingling, YANG Shaoming, DING Shaoqing, SHANG Peiling, YANG Jie, CAO Qiang, ZHA Wenling. Preparation and Application of Bisphenol-A TiO2 Gel Molecularly Imprinted Electrochemical Sensor Based on the Sensitivity-Enhancement of Gold Nanoparticles[J]. Chinese Journal of Applied Chemistry,
;2018, 35(4): 484-490.
doi:
10.11944/j.issn.1000-0518.2018.04.170107
Andreescu S, Sadik O A. Correlation of Analyte Structures with Biosensor Responses Using the Detection of Phenolic Estrongens as a Model[J]. Anal Chem, 2004,76(3):552-560. doi: 10.1021/ac034480z
Andersson L I, Mandenius C F, Mosbach K. Studies on Guest Selective Molecular Recognition on an Octadecyl Silylated Silicon Surface Using Ellipsometry[J]. Tertrahydron Lett, 1988,29(42):5437-5440. doi: 10.1016/S0040-4039(00)82889-0
Ichinose I, Senzu H, Kunitake T. A Surface Sol-Gel Process of TiO2 and Other Metal Oxide Films with Molecular Precision[J]. Chem Mater, 1997,9(6):1296-1298. doi: 10.1021/cm970008g
Ichinose I, Kawakami T, Kunitake T. Alternate Molecular Layers of Metal Oxides and Hydroxyl Polymers Prepared by the Surface Sol-Gel Process[J]. Adv Mater, 1998,10(7):535-539. doi: 10.1002/(ISSN)1521-4095
Yonezawa T, Matsune H, Kunitake T. Layered Nanocomposite of Close-Packed Gold Nanoparticles and TiO2 Gel Layers[J]. Chem Mater, 1999,11(1):33-35. doi: 10.1021/cm980687a
Zhang C J, Yan J L, Zhang C X. Enhanced Adsorption of Atrazine from Aqueous Solution by Molecularly Imprinted TiO2 Film[J]. Solid State Sci, 2012,14(7):777-781. doi: 10.1016/j.solidstatesciences.2012.04.023
Mujahid A, Lieberzeit P A, Dickert F L. Chemical Sensors Based on Molecularly Imprinted Sol-Gel Materials[J]. Materials, 2010,3(4):2196-2217. doi: 10.3390/ma3042196
Rachna R, Sheetal C, Tulika D. Development of an Amperometric Sulfite Biosensor Based on a Gold Nanoparticles/Chitosan/Multiwalled Carbon Nanotubes/Polyaniline-Modified Gold Electrode[J]. Anal Bioanal Chem, 2011,401(8):2599-2608. doi: 10.1007/s00216-011-5325-4
Kong F Y, Xu M T, Xu J J. A Novel Lable-free Electrochemical Immunosensor for Carcinoembryonic Antigen Based on Gold Nanoparticles-Thionine-Reduced Graphene Oxide Nanocomposite Film Modified Glassy Carbon Electrode[J]. Talanta, 2011,85(5):2620-2625. doi: 10.1016/j.talanta.2011.08.028
YANG Shaoming, ZHA Wenling, SUN Qing. Lable-Free Electrochemical Aptasensor Based on Nickel Hexacyanoferrate for the Detection of Thrombin[J]. Chinese J Appl Chem, 2014,31(6):743-748.
Li N, Fan X, Tang K. Nanocomposite Scaffold with Enhanced Stability by Hydrogen Bonds Between Collagen, Polyvinyl Pyrrolidone and Titanium Dioxide[J]. Colloid Surf B, 2016,140:287-296. doi: 10.1016/j.colsurfb.2015.12.005
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
a.bare GCE; b.AuNPs/GCE; c.MCH/AuNPs/GCE; d.MIP/MCH/AuNPs/GCE after removing the template; e.MIP/MCH /AuNPs/GCE after rebinding BPA; f.MIP/MCH/AuNPs/GCE before removing the template The top right inset is the equivalent circuit diagram; bottom right inset is the EIS of electrodes e and f
Electrodes:a.AuNPs/GCE; b.bare GCE; c.MCH/AuNPs/GCE; d.MIP/MCH/AuNPs/GCE after removing the template; e.MIP/MCH/AuNPs/GCE after rebinding BPA; f.MIP/MCH/AuNPs/GCE before removing the template DPV parameter:ΔE 0.004 V, amplitude 0.05 V, pulse width 0.05 s, pulse period 0.2 s
Electrodes:a.MIP/MCH/AuNPs/GCE after removing the template; b.MIP/MCH/GCE after removing the template; c.MIP/MCH/AuNPs/GCE before removing the template; d.NIP/MCH/AuNPs/GCE before removing the template; e.NIP/MCH/AuNPs/GCE after removing the template DPV parameter:ΔE 0.004 V, amplitude 0.05 V, pulse width 0.05 s, pulse period 0.2 s
c(BPA) of curves a~g/(mol·L-1):0, 1.0×10-8, 5.0×10-8, 1.0×10-7, 5.0×10-7, 1.0×10-6, 5.0×10-6, 1.0×10-5 DPV parameter:ΔE 0.004 V, amplitude 0.05 V, pulse width 0.05 s, pulse period 0.2 s
c(BPA)=1 μmol/L, other substance concentration:10 μmol/L