Citation: YANG Cheng, QI Jinshan, CUI Xingyu, CHENG Wenping, MA Jinghong, LI Ruifeng. Synthesis of Zeolite A/Activated Carbon Composite and CH4/N2 Adsorption Separation Performance[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 462-468. doi: 10.11944/j.issn.1000-0518.2018.04.170102 shu

Synthesis of Zeolite A/Activated Carbon Composite and CH4/N2 Adsorption Separation Performance

  • Corresponding author: CHENG Wenping, chengwenping@tyut.edu.cn
  • Received Date: 5 April 2017
    Revised Date: 18 May 2017
    Accepted Date: 30 June 2017

    Fund Project: the National Natural Science Foundation of China 51204120Supported by the National Natural Science Foundation of China(No.51204120), the Natural Science Foundation for Young Scientists of Shanxi Province, China(2014021014-1), the Key Scientific and Technological Project of Coal Fund of Shanxi Province(No.FT201402-03)the Key Scientific and Technological Project of Coal Fund of Shanxi Province FT201402-03the Natural Science Foundation for Young Scientists of Shanxi Province, China 2014021014-1

Figures(5)

  • A shaped activated carbon(AC) prepared after carbonization and physical activation, starting from pitch and elutrilithe, was further hydrothermally treated with alkaline solution. The effect of crystallization time on the formation of zeolite 4A, the pore structure and the adsorption ability of the composite towards CH4 and N2 were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), N2 adsorption-desorption at 77 K and CO2 adsorption isotherm at 273 K. The results show that silicon and aluminum in this composite are converted to zeolite 4A during the hydrothermal treatment. Simultaneously, micropores between 0.45~0.6 nm are appeared, the micropore volume is increased, accompanied by the presence of a few mesopores and macropores. Adsorption isotherms at 298 K indicate that the adsorption amount of CH4 by composite AC-2(crystalized for 6 hours) is elevated to 10.8 mL/g with a high CH4/N2 equilibrium selectivity of 3.7.
  • 加载中
    1. [1]

      Pillai R S, Sethia G, Jasra R V. Sorption of CO, CH4, and N2 in Alkali Metal Ion Exchanged Zeolite-X:Grand Canonical Monte Carlo Simulation and Volumetric Measurements[J]. Ind Eng Chem Res, 2010,49(12):5816-5825. doi: 10.1021/ie901713m

    2. [2]

      HU Jiangliang, SUN Tianjun, REN Xinyu. Separation of CH4/N2 on ZIF-8 Adsorbent and Its Thermodynamic Properties[J]. J Fuel Chem Technol, 2013,41(6):754-760.  

    3. [3]

      Gu M, Zhang B, Qi Z D. Effects of Pore Structure of Granular Activated Carbons on CH4 Enrichment from CH4/N2 by Vacuum Pressure Swing Adsorption[J]. Sep Sci Technol, 2015,146(2015):213-218.

    4. [4]

      Ren X Y, Sun T J, Hu J L. Highly Enhanced Selectivity for the Separation of CH4 over N2 on Two Ultra-microporous Frameworks with Multiple Coordination Modes[J]. Micropor Mesopor Mat, 2014,186(1):137-145.

    5. [5]

      Sethia G, Somani R S, Bajaj H C. Adsorption of Carbon Monoxide, Methane and Nitrogen on Alkaline Earth Metal Ion Exchanged Zeolite-X:Structure, Cation Position and Adsorption Relationship[J]. RSC Adv, 2015,5(17):12773-12781. doi: 10.1039/C4RA11511B

    6. [6]

      Xiao G K, Li Z K, Saleman T L. Adsorption Equilibria and Kinetics of CH4 and N2 on Commercial Zeolites and Carbons[J]. Adsorption, 2017,23(1):131-147. doi: 10.1007/s10450-016-9840-7

    7. [7]

      Bakhtyari A, Mofarahi M. Pure and Binary Adsorption Equilibria of Methane and Nitrogen on Zeolite 5A[J]. J Chem Eng Data, 2014,59(3):625-639.  

    8. [8]

      Xu X L, Zhao X X, Sun L B. Adsorption Separation of Carbon Dioxide, Methane, and Nitrogen on Hβ and Na-Exchanged β-Zeolite[J]. J Nat Gas Chem, 2008,17(4):391-396. doi: 10.1016/S1003-9953(09)60015-3

    9. [9]

      Sawant S Y, Somani R S, Sharma S S. Solid-state Dechlorination Pathway for the Synthesis of Few Layered Functionalized Carbon Nanosheets and Their Greenhouse Gas Adsorptivity over CO and N2[J]. Carbon, 2014,68(2014):210-220.  

    10. [10]

      Arami-Niya A, Rufford T E, Zhu Z H. Activated Carbon Monoliths with Hierarchical Pore Structure from Tar Pitch and Coal Powder for the Adsorption of CO2, CH4 and N2[J]. Carbon, 2016,103(2016):115-124.

    11. [11]

      Ruthven D M. Past Progress and Future Challenges in Adsorption Research[J]. Ind Eng Chem Res, 2000,39(7):2127-2131. doi: 10.1021/ie000060d

    12. [12]

      MA Zhaofei, BAI Jie, LI Chunping. Preparation of 4A Zeolite Molecule Sieve from Coal Gangue of Inner Mongolia[J]. Chem Ind Eng Prog, 2013,32(3):657-660.  

    13. [13]

      XU Hongliang, CHENG Weigao, LI Mu. Preparation of 4A-zeolite from Coal Gangue[J]. Non-Met Mines, 2011,34(2):14-16.  

    14. [14]

      TANG Yi, XIA Jianchao, REN Nan, et al. High-temperature Alkali Fusion and Hydrothermal Crystallization Combined Method for Preparation of Zeolite A Using Gangue: CN1346794[P], 2002-05-01(in Chinese).

    15. [15]

      TIAN Zhen, LI Shaohua, DU Zhigang. Synthesis of Zeolite 13X Using Gangue[J]. Non-Met Mines, 1997(6):31-33.

    16. [16]

      Li Z L, Cui X Y, Ma J H. Preparation of Granular X-type Zeolite/activated Carbon Composite from Elutrilithe by Adding Pitch and Solid SiO2[J]. Mater Chem Phys, 2014,147(3):1003-1008. doi: 10.1016/j.matchemphys.2014.06.051

    17. [17]

      Zhang D M, Cheng W P, Ma J H. Influence of Activated Carbon in Zeolite X/activated Carbon Composites on CH4/N2 Adsorption Separation Ability[J]. Adsorption, 2016,22(8):1-7.

    18. [18]

      ZHANG Dongmei. Preparation and Characterization of Adsorbents for CH4/N2 Adsorption Separation[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).

    19. [19]

      Jensen N K, Rufford T E, Watson G. Screening Zeolites for Gas Separation Applications Involving Methane, Nitrogen, and Carbon Dioxide[J]. J Chem Eng Data, 2014,57(1):106-113.

    20. [20]

      Yi H H, Li F R, Ning P. Adsorption Separation of CO2, CH4, and N2 on Microwave Activated Carbon[J]. Chem Eng J, 2013,215(3):635-642.

    21. [21]

      MENG Guanhua, LI Aimin, ZHANG Quanxing. Studies on the Oxygen-Containing Groups of Activated Carbon and Their Effects on the Adsorption Character[J]. Ion Exchange Adsorpt, 2007,23(1):88-94.  

    22. [22]

      Bao Z B, Yu L, Dou T. Adsorption Equilibria of CO2, CH4, N2, O2, and Ar on High Silica Zeolites[J]. J Chem Eng Data, 2011,56(11):4017-4023. doi: 10.1021/je200394p

    23. [23]

      Glover T G, Dunne K I, Davis R J. Carbon-silica Composite Adsorbent:Characterization and Adsorption of Light Gases[J]. Micropor Mesopor Mat, 2008,111(111):1-11.  

    24. [24]

      ZHANG Dongmei, CHENG Wenping, ZHANG Mingsheng. Preparation of AC/X-G Adsorbent and CH4/N2 Adsorption Separation Performance[J]. J Chem Ind Eng, 2016,67(6):2386-2392.

  • 加载中
    1. [1]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    2. [2]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    16. [16]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    17. [17]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    20. [20]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

Metrics
  • PDF Downloads(9)
  • Abstract views(926)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return