Citation: LENG Shuang, WANG Tao, YANG Min, ZHAO Yanzhi, LU Wei, WANG Ruoming, SUN Guoying. Preparation and Electrochemical Performance of Nitrogen Doped Carbon Materials Based on Polydopamine[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 477-483. doi: 10.11944/j.issn.1000-0518.2018.04.170094 shu

Preparation and Electrochemical Performance of Nitrogen Doped Carbon Materials Based on Polydopamine

  • Corresponding author: SUN Guoying, sunguoying@ccut.edu.cn
  • Received Date: 31 March 2017
    Revised Date: 2 May 2017
    Accepted Date: 23 May 2017

    Fund Project: the Jilin Science and Technology Development Program 20170101094JCSupported by the National Natural Science Foundation of China(No.21003013), the Jilin Science and Technology Development Program(No.20170101094JC)the National Natural Science Foundation of China 21003013

Figures(5)

  • Porous carbon materials have been extensively studied in the field of electrode materials for supercapacitor due to their high surface area, excellent electron conductivity and good chemical stability. The composition and pore structure of carbon materials directly affect their electrochemical performance. In order to further improve their capacitance performance, nitrogen doped carbon materials with excellent electrochemical performance were prepared for the first time by high temperature carbonization with polydopamine as precursor and KOH as activator. The surface morphology, structure and composition of the obtained N-doped porous carbon materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction spectra(XRD), Fourier transform infrared spectrometer(FT-IR), X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy, respectively. The electrochemical performances were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol/L KOH electrolyte. The results show that the specific capacitance of the material can reach 269 F/g at the current density of 1 A/g due to the synergistic effect of double layer capacitance and pseudocapacitance, and the capacitance still remains 93.5% after 1000 charge-discharge cycles.
  • 加载中
    1. [1]

      ZHAO Xue, QIU Daping, JIANG Haijing. The Latest Research Progress of Supercapacitor Electrode Materials[J]. Chinese Electron Compon Mater, 2015,34(1):32-34.  

    2. [2]

      Ma G F, Zhang Z G, Sun K J. White Clover Based Nitrogen-doped Porous Carbon for a High Energy Density Supercapacitor Electrode[J]. RSC Adv, 2015,5(130):107707-107715. doi: 10.1039/C5RA20327A

    3. [3]

      Mo R J, Zhao Y, Wu M. Activated Carbon from Nitrogen Rich Watermelon Rind for High-performance Supercapacitors[J]. RSC Adv, 2016,6(64):59333-59342. doi: 10.1039/C6RA10719B

    4. [4]

      Wang Y Y, Hou B H, Lü H Y. Porous N-Doped Carbon Material Derived from Prolific Chitosan Biomass as High-performance Electrode for Energy Storage[J]. RSC Adv, 2015,5(118):97427-97434. doi: 10.1039/C5RA20933A

    5. [5]

      Deng Y F, Xie Y, Zou K X. Review on Recent Advances in Nitrogen-doped Carbons:Preparations and Applications in Supercapacitors[J]. J Mater Chem A, 2016,4(10):1144-1173.

    6. [6]

      Divyashree A, Hegde G. Activated Carbon Nanospheres Derived from Bio-waste Materials for Supercapacitor Applications-A Review[J]. RSC Adv, 2015,5(107):88339-88352. doi: 10.1039/C5RA19392C

    7. [7]

      Jeon J W, Sharma R, Meduri P. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces, 2014,6(9):7214-7222.

    8. [8]

      Ma G F, Ran F T, Peng H. Nitrogen-doped Porous Carbon Obtained via One-step Carbonizing Biowaste Soybean Curd Residue for Supercapacitor Applications[J]. RSC Adv, 2015,5(101):83129-83138. doi: 10.1039/C5RA16619E

    9. [9]

      Chen X Y, Chen C, Zhan Z J. Nitrogen-Doped Porous Carbon Spheres Derived from Polyacrylamide[J]. Ind Eng Chem Res, 2013,52(34):12025-12031. doi: 10.1021/ie4017013

    10. [10]

      Ferrero G A, Fuertes A B, Sevilla M. N-Doped Porous Carbon Capsules with Tunable Porosity for High-performance Supercapacitors[J]. J Mater Chem A, 2015,3(4):2914-2923.

    11. [11]

      Ai K L, Liu Y L, Ruan C P. Sp2 C-Dominant N-Doped Carbon Sub-micrometer Spheres with a Tunable Size:A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts[J]. Adv Mater, 2013,25(7):998-1003. doi: 10.1002/adma.v25.7

    12. [12]

      Chen H C, Sun F G, Wang J T. Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons[J]. J Phys Chem C, 2013,117(9):8318-8328.

    13. [13]

      Xiao K, Ding L X, Chen H B. Nitrogen-doped Porous Carbon Derived from Residuary Shaddock Peel:A Promising and Sustainable Anode for High Energy Density Asymmetric Supercapacitors[J]. J Mater Chem A, 2016,4(1):372-378.

    14. [14]

      Wu X Y, Shi Z Q, Tjandra R. Nitrogen-enriched Porous Carbon Nanorods Templated by Cellulose Nanocrystals as High Performance Supercapacitor Electrode[J]. J Mater Chem A, 2015,3(28):23768-23777.

    15. [15]

      Chen J C, Liu Y Q, Li W J. The Large Electrochemical Capacitance of Nitrogen-doped Mesoporous Carbon Derived from Egg White by Using a ZnO Template[J]. RSC Adv, 2015,5(121):98177-98183.

    16. [16]

      Lin Z X, Tian H, Xu F G. Facile Synthesis of Bowl-shaped Nitrogen-doped Carbon Hollow Particles Templated by Block Copolymer "Kippah Vesicles" for High Performance Supercapacitors[J]. Polym Chem, 2016,7(3):2092-2098.

    17. [17]

      Liu X H, Zhou L, Zhao Y Q. Hollow, Spherical Nitrogen-Rich Porous Carbon Shells Obtained from a Porous Organic Framework for the Supercapacitor[J]. ACS Appl Mater Interfaces, 2013,8(18):10280-10287.

    18. [18]

      Liu C L, Wang J, Li J S. Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-performance Supercapacitors[J]. ACS Appl Mater Interfaces, 2016,8(8):7194-7204.

    19. [19]

      Lee W H, Moon J H. Monodispersed N-Doped Carbon Nanospheres for Supercapacitor Application[J]. ACS Appl Mater Interfaces, 2014,6(16):13968-13976. doi: 10.1021/am5033378

    20. [20]

      Cherusseri J, Kar K K. Hierarchically Mesoporous Carbon Nanopetal Based Electrodes for Flexible Supercapacitors with Super-long Cyclic Stability[J]. J Mater Chem A, 2015,3(24):21586-21598.

    21. [21]

      Wang Z Q, Sun L X, Xu F. Synthesis of N-Doped Hierarchical Carbon Spheres for CO2 Capture and Supercapacitors[J]. RSC Adv, 2016,6(3):1422-1427.

    22. [22]

      MA Shiyao, DU Hui, GENG Chuang. In Situ Synthesis of Nitrogen/Oxygen Co-doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials[J]. Chinese J Appl Chem, 2016,33(11):1316-1321. doi: 10.11944/j.issn.1000-0518.2016.11.160047 

    23. [23]

      Hu Y J, Tong X, Zhuo H. 3D Hierarchical Porous N-Doped Carbon Aerogel from Renewable Cellulose:An Attractive Carbon for High-performance Supercapacitor Electrodes and CO2 Adsorption[J]. RSC Adv, 2016,6(25):15788-15795.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    11. [11]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

Metrics
  • PDF Downloads(20)
  • Abstract views(3447)
  • HTML views(1816)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return