Citation: MENG Jingjia, ZHANG Feng, REN Yandong, LIU Lige, LIU Yonghao, ZHONG Haizheng. Halide Perovskite Based Two-Dimensional Nanocrystals: Synthesis and Luminescence Properties[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 342-350. doi: 10.11944/j.issn.1000-0518.2018.03.180002 shu

Halide Perovskite Based Two-Dimensional Nanocrystals: Synthesis and Luminescence Properties

  • Corresponding author: ZHONG Haizheng, hzzhong@bit.edu.cn
  • Received Date: 4 January 2018
    Revised Date: 15 January 2018
    Accepted Date: 16 January 2018

    Fund Project: the Heilongjiang Youth Science Fund QC2015066the National Natural Science Foundation of China 51761165021Supported by the National Natural Science Foundation of China(N0.51761165021), the Heilongjiang Youth Science Fund(No.QC2015066)

Figures(4)

  • Halide perovskites have received great attentions due to their interesting optical properties and potential optoelectronic applications. Due to the intrinsic layered structure, halide perovskite based two-dimensional nanomaterials can be controlled by adjusting the thickness in the nanoscale dimension. In this review, we present the progress of halide perovskite based two-dimensional nanomaterials with a focus on synthesis, optical properties and electroluminescence devices. Moreover, we also discuss the potential challenges and task in the future.
  • 加载中
    1. [1]

      Saparov B, Mitzi D B. Organic-Inorganic Perovskites:Structural Versatility for Functional Materials Design[J]. Chem Rev, 2016,116:4558-4596. doi: 10.1021/acs.chemrev.5b00715

    2. [2]

      Kojima A, Teshima K, Shirai Y. Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc, 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    3. [3]

      Correabaena J P, Abate A, Saliba M. The Rapid Evolution of Highly Efficient Perovskite Solar Cells[J]. Energy Environ Sci, 2017,10(3):710-727. doi: 10.1039/C6EE03397K

    4. [4]

      Arora N, Dar M I, Hinderhofer A. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater Than 20%[J]. Science, 2017,358(6364):768-771. doi: 10.1126/science.aam5655

    5. [5]

      Bush K A, Palmstrom A F, Zhengshan J Y. 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability[J]. Nat Energy, 2017,217009. doi: 10.1038/nenergy.2017.9

    6. [6]

      Fang Y, Dong Q, Shao Y. Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination[J]. Nat Photonics, 2015,9(10):679-686. doi: 10.1038/nphoton.2015.156

    7. [7]

      Zhao F, Chen D, Chang S. Highly Flexible Organometal Halide Perovskite Quantum Dot Based Light-Emitting Diodes on a Silver Nanowire-Polymer Composite Electrode[J]. J Mater Chem C, 2017,5(3):531-538. doi: 10.1039/C6TC04934F

    8. [8]

      Schmidt L C, Pertegaás A, Gonzaález-Carrero S. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles[J]. J Am Chem Soc, 2014,136(3):850-853. doi: 10.1021/ja4109209

    9. [9]

      Zhu H, Fu Y, Meng F. Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors[J]. Nat Mater, 2015,14:636-642. doi: 10.1038/nmat4271

    10. [10]

      Xing G, Mathews N, LimS S. Low-temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing[J]. Nat Mater, 2014,13:476-480. doi: 10.1038/nmat3911

    11. [11]

      Shan C, Shi G. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices[J]. Adv Mater, 2017,29(24)1605448. doi: 10.1002/adma.201605448

    12. [12]

      Protesescu L, Yakunin S, Bodnarchuk M I. Nanocrystals of Cesium Lead Halide Perovskites(CsPbX3, X=Cl, Br, and I):Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut[J]. Nano Lett, 2015,15(6):3692-3696. doi: 10.1021/nl5048779

    13. [13]

      Zhang F, Zhong H, Chen C. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I, Cl) Quantum Dots:Potential Alternatives for Display Technology[J]. ACS Nano, 2015,9(4):4533-4542. doi: 10.1021/acsnano.5b01154

    14. [14]

      Zhou Q, Bai Z, Lu W. In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights[J]. Adv Mater, 2016,28(41):9163-9168. doi: 10.1002/adma.201602651

    15. [15]

      JI Honglei, ZHOU Qingchao, PAN Jun. Advances and Prospects in Quantum Dots Based Backlights[J]. Chinese Opt, 2017,10(5):666-680.  

    16. [16]

      Huang S, Li Z, Kong L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene[J]. J Am Chem Soc, 2016,138(18):5749-5752. doi: 10.1021/jacs.5b13101

    17. [17]

      Li Z, Kong L, Huang S. Highly Luminescent and Ultra-stable CsPbBr3 Pervoskite Quantum Dots-Silica/Alumina Monolith[J]. Angew Chem Int Ed, 2017,56(28):8134-8138. doi: 10.1002/anie.v56.28

    18. [18]

      Wang N, Cheng L, Ge R. Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells[J]. Nat Photonics, 2016,10(11):699-704. doi: 10.1038/nphoton.2016.185

    19. [19]

      Li J, Xu L, Wang T. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control[J]. Adv Mater, 2017,29(5)1603885. doi: 10.1002/adma.201603885

    20. [20]

      Zhang L, Yang X, Jiang Q. Ultra-bright and Highly Efficient Inorganic Based Perovskite Light-Emitting Diodes[J]. Nat Commun, 2017,815640. doi: 10.1038/ncomms15640

    21. [21]

      Si J, Liu Y, He Z. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3(X=Br, I) Nanoplates with Controlled Thicknesses[J]. ACS Nano, 2017,11(11):11100-11107. doi: 10.1021/acsnano.7b05191

    22. [22]

      Bekensterin Y, Koscher B A, Eaton S W. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies[J]. J Am Chem Soc, 2015,137(51):16008-160011. doi: 10.1021/jacs.5b11199

    23. [23]

      Ha S T, Liu X, Zhang Q. Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets:Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices[J]. Adv Opt Mater, 2014,2(9):838-844. doi: 10.1002/adom.201400106

    24. [24]

      Niu Y, Zhang F, Bai Z. Aggregation-Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications[J]. Adv Opt Mater, 2015,3(1):112-119. doi: 10.1002/adom.v3.1

    25. [25]

      Tyagi P, Arveson S M, Tisdale W A. Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement[J]. J Phys Chem Lett, 2015,6(10):1911-1916. doi: 10.1021/acs.jpclett.5b00664

    26. [26]

      Sichert J A, Tong Y, Mutz N. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets[J]. Nano Lett, 2015,15(10):6521-6527. doi: 10.1021/acs.nanolett.5b02985

    27. [27]

      Dou L, Wong A B, Yu Y. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites[J]. Science, 2015,349(6255):1518-1521. doi: 10.1126/science.aac7660

    28. [28]

      Liu J, Xue Y, Wang Z. Two-dimensional CH3NH3PbI3 Perovskite:Synthesis and Optoelectronic Application[J]. ACS Nano, 2016,10(3):3536-3542. doi: 10.1021/acsnano.5b07791

    29. [29]

      Weidman M C, Seitz M, Stranks S D. Highly Tunable Colloidal Perovskite Nanoplatelets Through Variable Cation, Metal, and Halide Composition[J]. ACS Nano, 2016,10(8):7830-7839. doi: 10.1021/acsnano.6b03496

    30. [30]

      Yuan Z, Shu Y, Xin Y. Highly Luminescent Nanoscale Quasi-2D Layered Lead Bromide Perovskites with Tunable Emissions[J]. Chem Commun, 2016,52(20):3887-3890. doi: 10.1039/C5CC09762B

    31. [31]

      Sun S, Yuan D, Xu Y. Ligand-mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature[J]. ACS Nano, 2016,10(3):3648-3657. doi: 10.1021/acsnano.5b08193

    32. [32]

      Wang K H, Wu L, Li L. Large-Scale Synthesis of Highly Luminescent Perovskite-Related CsPb2Br5 Nanoplatelets and Their Fast Anion Exchange[J]. Angew Chem Int Ed, 2016,55(29):8328-8332. doi: 10.1002/anie.201602787

    33. [33]

      Shamsi J, Dang Z, Bianchini P. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control Up to the Micrometer Range[J]. J Am Chem Soc, 2016,138(23):7240-7243. doi: 10.1021/jacs.6b03166

    34. [34]

      Akkerman Q A, Motti S G, Kandada A R S. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control[J]. J Am Chem Soc, 2016,138(3):1010-1016. doi: 10.1021/jacs.5b12124

    35. [35]

      Huo C, Cai B, Yuan Z. Two-Dimensional Metal Halide Perovskites:Theory, Synthesis, and Optoelectronics[J]. Small Methods, 2017,1(3)1600018. doi: 10.1002/smtd.v1.3

    36. [36]

      Weidman M C, Goodman A J, Tisdale W A. Colloidal Halide Perovskite Nanoplatelets:An Exciting New Class of Semiconductor Nanomaterials[J]. Chem Mater, 2017,29(12):L5019-5030. doi: 10.1021/acs.chemmater.7b01384

    37. [37]

      Dou L. Emerging Two-Dimensional Halide Perovskite Nanomaterials[J]. J Mater Chem C, 2017,5(43):11165-11173. doi: 10.1039/C7TC02863F

    38. [38]

      Pan A, He B, Fan X. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals:The Role of Organic Acid, Base, and Cesium Precursors[J]. ACS Nano, 2016,10(8):7943-7954. doi: 10.1021/acsnano.6b03863

    39. [39]

      Tang Z, Kotov N A, Giersig M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires[J]. Science, 2002,297(5579):237-240. doi: 10.1126/science.1072086

    40. [40]

      Tang Z, Zhang Z, Wang Y. Self-assembly of CdTe Nanocrystals into Free-Floating Sheets[J]. Science, 2006,314(5797):274-278. doi: 10.1126/science.1128045

    41. [41]

      Huang H, Zhao F, Liu L. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots:An Alternative Route Toward Efficient Light-Emitting Diodes[J]. ACS Appl Mater Interfaces, 2015,7(51):28128-28133. doi: 10.1021/acsami.5b10373

    42. [42]

      Liu L, Huang S, Pan L. Colloidal Synthesis of CH3NH3PbBr3 Nanoplatelets with Polarized Emission Through Self-Organization[J]. Angew Chem Int Ed, 2017,56(7):1780-1783. doi: 10.1002/anie.201610619

    43. [43]

      Hintermayr V A, Richter A F, Ehrat F. Tuning the Optical Properties of Perovskite Nanoplatelets Through Composition and Thickness by Ligand-Assisted Exfoliation[J]. Adv Mater, 2016,28(43):9478-9485. doi: 10.1002/adma.201602897

    44. [44]

      Tong Y, Ehrat F, Vanderlinden W. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets[J]. ACS Nano, 2016,10(12):10936-10944. doi: 10.1021/acsnano.6b05649

    45. [45]

      Mir W J, Jagadeeswarao M, Das S. Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets[J]. ACS Energy Lett, 2017,2(3):537-543. doi: 10.1021/acsenergylett.6b00741

    46. [46]

      Yang S, Niu W, Wang A L. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability[J]. Angew Chem Int Edn, 2017,56(15):4252-4255. doi: 10.1002/anie.201701134

    47. [47]

      Kumar S, Jagielski J, Yakunin S. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites[J]. ACS Nano, 2016,10(10):9720-9729. doi: 10.1021/acsnano.6b05775

    48. [48]

      Congreve D N, Weidman M C, Seitz M. Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters[J]. ACS Photonics, 2017,4:476-481. doi: 10.1021/acsphotonics.6b00963

    49. [49]

      Kumar S, Jagielski J, Kallikounis N. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites:Achieving Recommendation 2020 Color Coordinates[J]. Nano Lett, 2017,17(9):5277-5284. doi: 10.1021/acs.nanolett.7b01544

    50. [50]

      Hu X, Zhou H, Jiang Z. Direct Vapor Growth of Perovskite CsPbBr3 Nanoplate Electroluminescence Devices[J]. ACS Nano, 2017,11(10):9869-9876. doi: 10.1021/acsnano.7b03660

    51. [51]

      Bohn B J, Simon T, Gramlich M. Dephasing and Quantum Beating of Excitons in Methyl Ammonium Lead Iodide Perovskite Nanoplatelets[J]. ACS Photonics, 2018. doi: 10.1021/acsphotonics.7b01292

    52. [52]

      Li P, Chen Y, Yang T. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers[J]. ACS Appl Mater Interfaces, 2017,9(14):12759-1276. doi: 10.1021/acsami.7b01709

    53. [53]

      Yaffe O, Chernikov A, Norman Z M. Excitons in Utrathin Organic-Inorganic Perovskite Crystals[J]. Phys Rev B, 2015,92(4)045414. doi: 10.1103/PhysRevB.92.045414

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    15. [15]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

Metrics
  • PDF Downloads(81)
  • Abstract views(3147)
  • HTML views(1133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return