Citation: CHEN Nan, ZHONG Guilin, ZHANG Guofeng. Application and Interaction Mechanism of Graphene in Polymer Flame Retardant Materials[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 307-316. doi: 10.11944/j.issn.1000-0518.2018.03.170469 shu

Application and Interaction Mechanism of Graphene in Polymer Flame Retardant Materials

  • Corresponding author: CHEN Nan, gabechain@bit.edu.cn
  • Received Date: 25 December 2017
    Revised Date: 5 January 2018
    Accepted Date: 9 January 2018

    Fund Project: the National Natural Science Foundation of China 21671020China Postdoctoral Science Foundation(No.21671020), Beijing Natural Science Foundation of China 2172049Supported by the National Natural Science Foundation of China(No.21606074), China Postdoctoral Science Foundation(No.21671020), Beijing Natural Science Foundation of China(No.2172049)

Figures(5)

  • In this paper, starting from the flame retardant composite materials of different polymer substrates, the application and mechanism of graphene in different kinds of polymer flame retardant materials are introduced in detail including graphene/polyethylene, graphene/polypropylene, graphene/polystyrene, graphene/epoxy resin, graphene/polyurethane, graphene/polyvinyl alcohol and graphene/other polymer composite flame retardant materials. The effect of graphene-based materials is also introduced in detail. This review provides a good theoretical support for the development of novel graphene-based/polymer composite flame retardant materials.
  • 加载中
    1. [1]

      ZHU Deqin, ZHENG Shouyang, SHENG Yu. Flame-retardant Synergistic Effect of Synergists on Intumescent Flame-retardant Wood Flour-Polypropylene Composites[J]. Chinese J Appl Chem, 2017,34(2):195-203. doi: 10.11944/j.issn.1000-0518.2017.02.160189 

    2. [2]

      GAO Yuan, CHEN Guohua. Recent Progress in Preparation Method of the Polymer/Graphene Composites and It's Industrialization Status[J]. Acta Polym Sin, 2014(10):1314-1327. doi: 10.11777/j.issn1000-3304.2014.14217

    3. [3]

      WANG Ziying, SHEN Yifeng, YANG Lei. Application of Vinyl Nitrogen Phosphorus Flame Retardants on Silk Fabric[J]. J Text Res, 2015,36(7):77-82.  

    4. [4]

      ZHANG Jinkai, MA Li, GE Weijuan. Research Status of Intumescent Flame-retarded Polypropylene[J]. Mater Rev A, 2015,29(5):68-72.  

    5. [5]

      FAN Quanbao, XIE Ting, YANG Eryan. Effect of Carbonate Oligomer of Tetrabromobisphenol A on Flame Retardance of Polycarbonate[J]. Plast Sci Technol, 2010,38(1):43-45.  

    6. [6]

      LI Xingjian, ZHANG Yiheng, SUN Daoxing. Preparation and Properties of Magnesium Hydroxide/Aluminum Hydroxide/Melamine Phosphate Filled Flame Retardant Silicone Rubber[J]. China Rubber Ind, 2013,60(6):344-350.  

    7. [7]

      Ran S, Guo Z, Han L. Effect of Friedel-Crafts Reaction on the Thermal Stability and Flammability of High-Density Polyethylene/Brominated Polystyrene/Graphene Nanoplatelet Composites[J]. Polym Int, 2014,63(10):1835-1841. doi: 10.1002/pi.2014.63.issue-10

    8. [8]

      Ran S, Chen C, Guo Z. Char Barrier Effect of Graphene Nanoplatelets on the Flame Retardancy and Thermal Stability of High-Density Polyethylene Flame-Retarded by Brominated Polystyrene[J]. J Appl Polym Sci, 2014,131(15):4401-4404.  

    9. [9]

      Hu W, Zhan J, Wang X. Effect of Functionalized Graphene Oxide with Hyper-Branched Flame Retardant on Flammability and Thermal Stability of Cross-Linked Polyethylene[J]. Ind Eng Chem Res, 2014,53(13):3073-3083.  

    10. [10]

      Dittrich B, Wartig K, Hofmann D. Flame Retardancy Through Carbon Nanomaterials:Carbon Black, Multiwall Nanotubes, Expanded Graphite, Multi-Layer Graphene and Graphene in Polypropylene[J]. Polym Degrad Stabil, 2013,98(8):1495-1505. doi: 10.1016/j.polymdegradstab.2013.04.009

    11. [11]

      Hofmann D, Wartig K, Thomann R. Functionalized Graphene and Carbon Materials as Additives for Melt-Extruded Flame Retardant Polypropylene[J]. Macromol Mater Eng, 2013,298(12):1322-1334. doi: 10.1002/mame.v298.12

    12. [12]

      Dittrich B, Wartig K, Hofmann D. Carbon Black, Multiwall Carbon Nanotubes, Expanded Graphite and Functionalized Graphene Flame Retarded Polypropylene Nanocomposites[J]. Polym Adv Technol, 2013,24(10):916-926. doi: 10.1002/pat.3165

    13. [13]

      Huang G, Wang S, Song P. Combination Effect of Carbon Nanotubes with Graphene on Intumescent Flame-Retardant Polypropylene Nanocomposites[J]. Composites:Part A, 2014,59:18-25. doi: 10.1016/j.compositesa.2013.12.010

    14. [14]

      Xu J, Liu J, Li K. Application of Functionalized Graphene Oxide in Flame-Retardant Polypropylene[J]. J Vinyl Addit Tech, 2015,21(4):278-284. doi: 10.1002/vnl.21415

    15. [15]

      Dong L, Hu C, Song L. A Large-Area, Flexible, and Flame-Retardant Graphene Paper[J]. Adv Funct Mater, 2016,26(9):1470-1476. doi: 10.1002/adfm.201504470

    16. [16]

      Hu C, Xue J, Dong L. Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams[J]. ACS Nano, 2016,10(1):1325-1332. doi: 10.1021/acsnano.5b06710

    17. [17]

      Chen W, Liu Y, Lin P. The Preparation and Application of a Graphene-based Hybrid Flame Retardant Containing a Long-Chain Phosphaphenanthrene[J]. Sci Rep, 2017,7(1)8759. doi: 10.1038/s41598-017-09459-9

    18. [18]

      Yu B, Wang X, Qian X. Functionalized Graphene Oxide/Phosphoramide Oligomer Hybrids Flame Retardant Prepared via in Situ Polymerization for Improving the Fire Safety of Polypropylene[J]. RSC Adv, 2014,4(60):31782-31794. doi: 10.1039/C3RA45945D

    19. [19]

      Dittrich B, Wartig K, M lhaupt R. Flame-Retardancy Properties of Intumescent Ammonium Poly(phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene[J]. Polymers, 2014,6(11):2875-2895.  

    20. [20]

      Nie L, Liu C, Liu L. Study of the Thermal Stability and Flame Retardant Properties of Graphene Oxide-Decorated Zirconium Organophosphate Based on Polypropylene Nanocomposites[J]. RSC Adv, 2015,5(112):92318-92327. doi: 10.1039/C5RA13850G

    21. [21]

      Yuan B, Bao C, Song L. Preparation of Functionalized Graphene Oxide/Polypropylene Nanocomposite with Significantly Improved Thermal Stability and Studies on the Crystallization Behavior and Mechanical Properties[J]. Chem Eng J, 2014,237:411-420. doi: 10.1016/j.cej.2013.10.030

    22. [22]

      Yuan B, Song L, Liew K. Solid Acid-reduced Graphene Oxide Nanohybrid for Enhancing Thermal Stability, Mechanical Property and Flame Retardancy of Polypropylene[J]. RSC Adv, 2015,5(51):41307-41316. doi: 10.1039/C5RA04699H

    23. [23]

      Yuan B, Sheng H, Mu X. Enhanced Flame Retardancy of Polypropylene by Melamine-Modified Graphene Oxide[J]. J Mater Sci, 2015,50(16):5389-5401. doi: 10.1007/s10853-015-9083-0

    24. [24]

      Ren P G, Yan D X, Chen T. Improved Properties of Highly Oriented Graphene/Polymer Nanocomposites[J]. J Appl Polym Sci, 2011,121(6):3167-3174. doi: 10.1002/app.33856

    25. [25]

      Bao C, Guo Y, Yuan B. Functionalized Graphene Oxide for Fire Safety Applications of Polymers:A Combination of Condensed Phase Flame Retardant Strategies[J]. J Mater Chem, 2012,22(43):23057-23063. doi: 10.1039/c2jm35001g

    26. [26]

      Han Y, Wu Y, Shen M. Preparation and Properties of Polystyrene Nanocomposites with Graphite Oxide and Graphene as Flame Retardants[J]. J Mater Sci, 2013,48(12):4214-4222. doi: 10.1007/s10853-013-7234-8

    27. [27]

      Zhou K, Yang W, Tang G. Comparative Study on the Thermal Stability, Flame Retardancy and Smoke Suppression Properties of Polystyrene Composites Containing Molybdenum Disulfide and Graphene[J]. RSC Adv, 2013,3(47):25030-25040. doi: 10.1039/c3ra43297a

    28. [28]

      Attia N, Abd El-Aal N, Hassan M. Facile Synthesis of Graphene Sheets Decorated Nanoparticles and Flammability of Their Polymer Nanocomposites[J]. Polym Degrad Stabil, 2016,126:65-74. doi: 10.1016/j.polymdegradstab.2016.01.017

    29. [29]

      Hong N, Zhan J, Wang X. Enhanced Mechanical, Thermal and Flame Retardant Properties by Combining Graphene Nanosheets and Metal Hydroxide Nanorods for Acrylonitrile-Butadiene-Styrene Copolymer Composite[J]. Composites:Part A, 2014,64:203-210. doi: 10.1016/j.compositesa.2014.04.015

    30. [30]

      Higginbotham A, Lomeda J, Morgan A. Graphite Oxide Flame-Retardant Polymer Nanocomposites[J]. ACS Appl Mater Interfaces, 2009,1(10):2256-2261. doi: 10.1021/am900419m

    31. [31]

      Hu W, Yu B, Jiang S. Hyper-branched Polymer Grafting Graphene Oxide as an Effective Flame Retardant and Smoke Suppressant for Polystyrene[J]. J Hazard Mater, 2015,300:58-66. doi: 10.1016/j.jhazmat.2015.06.040

    32. [32]

      Zhuo D, Wang R, Wu L. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites[J]. J Nanomater, 2013,2013(1)820901.  

    33. [33]

      Li Q, Guo Y, Li W. Ultrahigh Thermal Conductivity of Assembled Aligned Multilayer Graphene/Epoxy Composite[J]. Chem Mater, 2014,26(15):4459-4465. doi: 10.1021/cm501473t

    34. [34]

      Luo F, Wu K, Guo H. Anisotropic Thermal Conductivity and Flame Retardancy of Nanocomposite Based on Mesogenic Epoxy and Reduced Graphene Oxide Bulk[J]. Compos Sci Technol, 2016,132:1-8. doi: 10.1016/j.compscitech.2016.06.007

    35. [35]

      Liu S, Yan H, Fang Z. Effect of Graphene Nanosheets on Morphology, Thermal Stability and Flame Retardancy of Epoxy Resin[J]. Compos Sci Technol, 2014,90:40-47. doi: 10.1016/j.compscitech.2013.10.012

    36. [36]

      Wang R, Zhuo D, Weng Z. A Novel Nanosilica/Graphene Oxide Hybrid and Its Flame Retarding Epoxy Resin with Simultaneously Improved Mechanical, Thermal Conductivity, and Dielectric Properties[J]. J Mater Chem A, 2015,3(18):9826-9836. doi: 10.1039/C5TA00722D

    37. [37]

      Wang X, Xing W, Feng X. The Effect of Metal Oxide Decorated Graphene Hybrids on the Improved Thermal Stability and the Reduced Smoke Toxicity in Epoxy Resins[J]. Chem Eng J, 2014,250:214-221. doi: 10.1016/j.cej.2014.01.106

    38. [38]

      Guan F, Gui C, Zhang H. Enhanced Thermal Conductivity and Satisfactory Flame Retardancy of Epoxy/Alumina Composites by Combination with Graphene Nanoplatelets and Magnesium Hydroxide[J]. Composites Part B, 2016,98:134-140. doi: 10.1016/j.compositesb.2016.04.062

    39. [39]

      Liu S, Yan H, Fang Z. Effect of Graphene Nanosheets and Layered Double Hydroxides on the Flame Retardancy and Thermal Degradation of Epoxy Resin[J]. RSC Adv, 2014,4(36):18652-18659. doi: 10.1039/C4RA01267D

    40. [40]

      Guo Y, Bao C, Song L. In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of On-the-Flame Behavior[J]. Ind Eng Chem Res, 2011,50(13):7772-7783. doi: 10.1021/ie200152x

    41. [41]

      Liu S, Fang Z, Yan H. Superior Flame Retardancy of Epoxy Resin by the Combined Addition of Graphene Nanosheets and DOPO[J]. RSC Adv, 2016,6(7):5288-5295. doi: 10.1039/C5RA25988F

    42. [42]

      Liao S, Liu P, Hsiao M. One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite[J]. Ind Eng Chem Res, 2012,51(12):4573-4581. doi: 10.1021/ie2026647

    43. [43]

      Wang X, Song L, Pornwannchai W. The Effect of Graphene Presence in Flame Retarded Epoxy Resin Matrix on the Mechanical and Flammability Properties of Glass Fiber-reinforced Composites[J]. Composites:Part A, 2013,53:88-96. doi: 10.1016/j.compositesa.2013.05.017

    44. [44]

      Wang Z, Wei P, Qian Y. The Synthesis of a Novel Graphene-based Inorganic Organic Hybrid Flame Retardant and Its Application in Epoxy Resin[J]. Composites:Part B, 2014,60:341-349. doi: 10.1016/j.compositesb.2013.12.033

    45. [45]

      Yu B, Shi Y, Yuan B. Enhanced Thermal and Flame Retardant Properties of Flame-retardant-wrapped Graphene/Epoxy Resin Nanocomposites[J]. J Mater Chem A, 2015,3(15):8034-8044. doi: 10.1039/C4TA06613H

    46. [46]

      Qian X, Song L, Yu B. Novel Organic inorganic Flame Retardants Containing Exfoliated Graphene:Preparation and Their Performance on the Flame Retardancy of Epoxy Resins[J]. J Mater Chem A, 2013,1(23):6822-6830. doi: 10.1039/c3ta10416h

    47. [47]

      Wang X, Xing W, Feng X. Functionalization of Graphene with Grafted Polyphosphamide for Flame Retardant Epoxy Composites:Synthesis, Flammability and Mechanism[J]. Polym Chem, 2014,5(4):1145-1154. doi: 10.1039/C3PY00963G

    48. [48]

      Hu J, Zhang F. Self-assembled Fabrication and Flame-Retardant Properties of Reduced Graphene Oxide/Waterborne Polyurethane Nanocomposites[J]. J Therm Anal Calorim, 2014,118(3):1561-1568. doi: 10.1007/s10973-014-4078-7

    49. [49]

      Zhou K, Gui Z, Hu Y. The Influence of Cobalt Oxide Graphene Hybrids on Thermal Degradation, Fire Hazards and Mechanical Properties of Thermoplastic Polyurethane Composites[J]. Composites:Part A, 2016,88:10-18. doi: 10.1016/j.compositesa.2016.05.014

    50. [50]

      Wang Z, Li X. Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foams Containing a SiO2 Nanospheres/Graphene Oxide Hybrid and Dimethyl Methylphosphonate[J/OL]. J Polym-Plast Technol Eng, 2017-07-20. [2018-01-03]. https://doi.org/10.1080/03602559.2017.1354251. [published online ahead of print]

    51. [51]

      Pan H, Lu Y, Song L. Fabrication of Binary Hybrid-Filled Layer-by-Layer Coatings on Flexible Polyurethane Foams and Studies on Their Flame-Retardant and Thermal Properties[J]. RSC Adv, 2016,6(82):78286-78295. doi: 10.1039/C6RA03760G

    52. [52]

      Wei H, Zhu Z, Sun H. Graphene and Poly(ionic liquid) Modified Polyurethane Sponges with Enhanced Flame-Retardant Properties[J]. J Appl Polym Sci, 2017,134(44)45477. doi: 10.1002/app.45477

    53. [53]

      Huang G, Gao J, Wang X. How can Graphene Reduce the Flammability of Polymer Nanocomposites?[J]. Mater Lett, 2012,66(1):187-189. doi: 10.1016/j.matlet.2011.08.063

    54. [54]

      Huang G, Chen S, Liang H. Combination of Graphene and Montmorillonite Reduces the Flammability of Poly(vinyl alcohol) Nanocomposites[J]. Appl Clay Sci, 2013,s80/81:433-437.  

    55. [55]

      Huang G, Liang H, Wang Y. Combination Effect of Melamine Polyphosphate and Graphene on Flame Retardant Properties of Poly(vinyl alcohol)[J]. Mater Chem Phys, 2012,132(2/3):520-528.  

    56. [56]

      Huang G, Yang J, Gao J. Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric[J]. Ind Eng Chem Res, 2012,51(38):12355-12366. doi: 10.1021/ie301911t

    57. [57]

      Zuo L, Fan W, Zhang Y. Graphene/Montmorillonite Hybrid Synergistically Reinforced Polyimide Composite Aerogels with Enhanced Flame-Retardant Performance[J]. Compos Sci Technol, 2017,139:57-63. doi: 10.1016/j.compscitech.2016.12.008

    58. [58]

      Gedler G, Antunes M, Realinho V. Thermal Stability of Polycarbonate-Graphene Nanocomposite Foams[J]. Polym Degrad Stabil, 2012,97(8):1297-1304. doi: 10.1016/j.polymdegradstab.2012.05.027

    59. [59]

      Kuila T, Khanra P, Mishra A. Functionalized-Graphene/Ethylene Vinyl Acetate Co-Polymer Composites for Improved Mechanical and Thermal Properties[J]. Polym Test, 2012,31(2):282-289. doi: 10.1016/j.polymertesting.2011.12.003

    60. [60]

      Huang G, Chen S, Tang S. A Novel Intumescent Flame Retardant-functionalized Graphene:Nanocomposite Synthesis, Characterization, and Flammability Properties[J]. Mater Chem Phys, 2012,135(2/3):938-947.  

    61. [61]

      Wang Z, Xu S, Wu L. Flammability and Thermal Degradation of PMMA/Graphene Composites[J]. Adv Mater Res, 2014,910:31-34. doi: 10.4028/www.scientific.net/AMR.910

    62. [62]

      Huang G, Chen S, Song P. Combination effects of Graphene and Layered Double Hydroxides on Intumescent Flame-Retardant Poly(methyl methacrylate) Nanocomposites[J]. Appl Clay Sci, 2014,88/89(3):78-85.  

    63. [63]

      Wang X, Song L, Yang H. Synergistic Effect of Graphene on Antidripping and Fire Resistance of Intumescent Flame Retardant Poly(butylene succinate) Composites[J]. Ind Eng Chem Res, 2011,50(9):5376-5383. doi: 10.1021/ie102566y

    64. [64]

      Wang X, Hu Y, Song L. Comparative Study on the Synergistic Effect of POSS and Graphene with Melamine Phosphate on the Flame Retardance of Poly(butylene succinate)[J]. Thermochim Acta, 2012,543:156-164. doi: 10.1016/j.tca.2012.05.017

    65. [65]

      Wicklein B, Kocjan A, Salazar-Alvarez G. Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide[J]. Nat Nanotechnol, 2015,10(3):277-283. doi: 10.1038/nnano.2014.248

    66. [66]

      Nine M, Tran D, Tung T. Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action[J]. ACS Appl Mater Interfaces, 2017,9(11):10160-10168. doi: 10.1021/acsami.7b00572

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    6. [6]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    7. [7]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    8. [8]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    9. [9]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    10. [10]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    11. [11]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    14. [14]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(1)
  • Abstract views(1800)
  • HTML views(455)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return