Citation: YAO Huiying, YANG Tao, HUANG Xing, ZHU Jia, LI Qing, XU Wei, CHI Lifeng. Coordination Complexes Based on MX4 Structure as Catalyst for Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 328-341. doi: 10.11944/j.issn.1000-0518.2018.03.170453 shu

Coordination Complexes Based on MX4 Structure as Catalyst for Hydrogen Evolution Reaction

  • Corresponding author: ZHU Jia, zhu.jia@bnu.edu.cn
  • Received Date: 14 December 2017
    Revised Date: 8 January 2018
    Accepted Date: 10 January 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.21773016)the National Natural Science Foundation of China 21773016

Figures(7)

  • The coordination complexes based on MX4(M=Fe, Co, Ni, Cu, et al, X=N, S, Se, et al.) structure have attracted a lot of attentions due to their novel structure and good electrocatalytic performance in hydrogen evolution reaction(HER). This review shows the recent research progresses of their catalytic properties for HER. The HER activities of MX4 catalysts are affected by many factors, such as the metal center, coordination atoms, the ligand, the morphology and size of catalysts. Theoretical calculations are very helpful for understanding their influences on the activities of the catalysts and can further help us design more catalysts with higher activities.
  • 加载中
    1. [1]

      Borup R, Meyers J, Pivovar B. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem Rev, 2007,107(10):3904-3951. doi: 10.1021/cr050182l

    2. [2]

      Amphlett J, Evans M, Jones R. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1:The Thermodynamics[J]. Can J Chem Eng, 1981,59(6):720-727. doi: 10.1002/cjce.v59:6

    3. [3]

      Steinberg M, Cheng H C. Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels[J]. Int J Hydrogen Energ, 1989,14(11):797-820. doi: 10.1016/0360-3199(89)90018-9

    4. [4]

      Bard A J, Fox M A. Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Acc Chem Res, 1995,28(3):141-145. doi: 10.1021/ar00051a007

    5. [5]

      Dresselhaus M S, Thomas I L. Alternative Energy Technologies[J]. Nature, 2001,414(6861):332-337. doi: 10.1038/35104599

    6. [6]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    7. [7]

      Subbaraman R, Tripkovic D, Strmcnik D. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science, 2011,334(6060):1256-1260. doi: 10.1126/science.1211934

    8. [8]

      Walter M G, Warren E L, McKone J R. Solar Water Splitting Cells[J]. Chem Rev, 2010,110(11):6446-6473. doi: 10.1021/cr1002326

    9. [9]

      Cook T R, Dogutan D K, Reece S Y. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds[J]. Chem Rev, 2010,110(11):6474-6502. doi: 10.1021/cr100246c

    10. [10]

      Yin H, Zhao S, Zhao K. Ultrathin Platinum Nanowires Grown on Single-Layered Nickel Hydroxide with High Hydrogen Evolution Activity[J]. Nat Commun, 2015,66430. doi: 10.1038/ncomms7430

    11. [11]

      Conway B E, Tilak B V. Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of H2, and the Role of Chemisorbed H[J]. Electrochim Acta, 2002,47(22/23):3571-3594.  

    12. [12]

      McKone J R, Marinescu S C, Brunschwig B S. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci, 2014,5(3):865-878. doi: 10.1039/C3SC51711J

    13. [13]

      Zheng Y, Jiao Y, Zhu Y. Hydrogen Evolution by a Metal-Free Electrocatalyst[J]. Nat Commun, 2014,53783.  

    14. [14]

      Hu X, Cossairt B M, Brunschwig B S. Electrocatalytic Hydrogen Evolution by Cobalt Difluoroboryl-Diglyoximate Complexes[J]. Chem Commun, 2005,0(37):4723-4725.  

    15. [15]

      Dempsey J L, Brunschwig B S, Winkler J R. Hydrogen Evolution Catalyzed by Cobaloximes[J]. Acc Chem Res, 2009,42(12):1995-2004. doi: 10.1021/ar900253e

    16. [16]

      McNamara W R, Han Z, Alperin P J. A Cobalt-Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons[J]. J Am Chem Soc, 2011,133(39):15368-15371. doi: 10.1021/ja207842r

    17. [17]

      Barnett S M, Goldberg K I, Mayer J M. A Soluble Copper-Bipyridine Water-Oxidation Electrocatalyst[J]. Nat Chem, 2012,4(6):498-502. doi: 10.1038/nchem.1350

    18. [18]

      McNamara W R, Han Z, Yin J C. Cobalt-Dithiolene Complexes for the Photocatalytic and Electrocatalytic Reduction of Protons in Aqueous Solutions[J]. Proc Natl Acad Sci USA, 2012,109(39):15594-15599. doi: 10.1073/pnas.1120757109

    19. [19]

      Jahan M, Liu Z, Loh K P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR[J]. Adv Funct Mater, 2013,23(43):5363-5372. doi: 10.1002/adfm.v23.43

    20. [20]

      Fang M, Engelhard M H, Zhu Z. Electrodeposition from Acidic Solutions of Nickel Bis(Benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon[J]. ACS Catal, 2014,4(1):90-98. doi: 10.1021/cs400675u

    21. [21]

      Letko C S, Panetier J A, Head-Gordon M. Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes[J]. J Am Chem Soc, 2014,136(26):9364-9376. doi: 10.1021/ja5019755

    22. [22]

      Zhang P, Wang M, Yang Y. A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution[J]. Angew Chem Int Edit, 2014,53(50):13803-13807. doi: 10.1002/anie.201408266

    23. [23]

      Clough A J, Yoo J W, Mecklenburg M H. Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water[J]. J Am Chem Soc, 2015,137(1):118-121. doi: 10.1021/ja5116937

    24. [24]

      Dong R, Pfeffermann M, Liang H. Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution[J]. Angew Chem Int Edit, 2015,54(41):12058-12063. doi: 10.1002/anie.201506048

    25. [25]

      Downes C A, Marinescu S C. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal-Organic Surface[J]. J Am Chem Soc, 2015,137(43):13740-13743. doi: 10.1021/jacs.5b07020

    26. [26]

      Downes C A, Marinescu S C. One Dimensional Metal Dithiolene(M=Ni, Fe, Zn) Coordination Polymers for the Hydrogen Evolution Reaction[J]. Dalton Trans, 2016,45(48):19311-19321. doi: 10.1039/C6DT03257E

    27. [27]

      Zarkadoulas A, Field M J, Papatriantafyllopoulou C. Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts[J]. Inorg Chem, 2016,55(2):432-444.  

    28. [28]

      Dong R, Zheng Z, Tranca D C. Immobilizing Molecular Metal Dithiolene-Diamine Complexes on 2D Metal-Organic Frameworks for Electrocatalytic H2 Production[J]. Chem Eur J, 2017,23(10):2255-2260. doi: 10.1002/chem.201605337

    29. [29]

      Downes C A, Marinescu S C. Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H2 Evolution[J]. ACS Catal, 2017,7(1):848-854. doi: 10.1021/acscatal.6b03161

    30. [30]

      Downes C A, Yoo J W, Orchanian N M. H2 Evolution by a Cobalt Selenolate Electrocatalyst and Related Mechanistic Studies[J]. Chem Commun, 2017,53(53):7306-7309. doi: 10.1039/C7CC02473H

    31. [31]

      Huang X, Yao H, Cui Y. Conductive Copper Benzenehexathiol Coordination Polymer as a Hydrogen Evolution Catalyst[J]. ACS Appl Mater Interfaces, 2017,9(46):40752-40759. doi: 10.1021/acsami.7b14523

    32. [32]

      Wang L, Tranca D C, Zhang J. Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers[J]. Small, 2017,13(37):1700783-1700790. doi: 10.1002/smll.v13.37

    33. [33]

      Coggins M K, Zhang M T, Chen Z. Single-Site Copper(Ⅱ) Water Oxidation Electrocatalysis:Rate Enhancements with HPO42- as a Proton Acceptor at pH 8[J]. Angew Chem Int Edit, 2014,53(45):12226-12230. doi: 10.1002/anie.201407131

    34. [34]

      Nam N T S, Sluys M V D, Jones C W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings-Homogeneous or Heterogeneous Catalysis, a Critical Review[J]. Adv Synth Catal, 2006,348(6):609-679. doi: 10.1002/(ISSN)1615-4169

    35. [35]

      Song L C, Yang Z Y, Bian H Z. Diiron Oxadithiolate Type Models for the Active Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution Catalyzed by Fe2(SCH2OCH2S)(CO)6[J]. Organometallics, 2005,24(25):6126-6135. doi: 10.1021/om0507373

    36. [36]

      Costentin C, Sav ant J M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions:Benchmarking of Homogeneous Catalysts[J]. ChemElectroChem, 2014,1(7):1226-1236. doi: 10.1002/celc.201300263

    37. [37]

      Wiedner E S, Brown H J, Helm M L. Kinetic Analysis of Competitive Electrocatalytic Pathways:New Insights into Hydrogen Production with Nickel Electrocatalysts[J]. J Am Chem Soc, 2016,138(2):604-616. doi: 10.1021/jacs.5b10853

    38. [38]

      Zheng Y, Jiao Y, Jaroniec M. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory[J]. Angew Chem Int Edit, 2015,54(1):52-65. doi: 10.1002/anie.201407031

    39. [39]

      Nørskov J K, Bligaard T, Logadottir A. Trends in the Exchange Current for Hydrogen Evolution[J]. J Electrochem Soc, 2005,152(3):J23-J26. doi: 10.1149/1.1856988

    40. [40]

      Artero V, Fontecave M. Some General Principles for Designing Electrocatalysts with Hydrogenase Activity[J]. Coord Chem Rev, 2005,249(15/16):1518-1535.  

    41. [41]

      Andreiadis E S, Jacques P A, Tran P D. Molecular Engineering of a Cobalt-Based Electrocatalytic Nanomaterial for H2 Evolution under Fully Aqueous Conditions[J]. Nat Chem, 2013,5(1):48-53. doi: 10.1038/nchem.1481

    42. [42]

      Baker-Hawkes M J, Billig E, Gray H B. Characterization and Electronic Structures of Metal Complexes Containing Benzene-1, 2-dithiolate and Related Ligands[J]. J Am Chem Soc, 1966,88(21):4870-4875. doi: 10.1021/ja00973a021

    43. [43]

      Solis B H, Hammes-Schiffer S. Computational Study of Anomalous Reduction Potentials for Hydrogen Evolution Catalyzed by Cobalt Dithiolene Complexes[J]. J Am Chem Soc, 2012,134(37):15253-15256. doi: 10.1021/ja306857q

    44. [44]

      Tran P D, Le Goff A, Heidkamp J. Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes:Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake[J]. Angew Chem Int Edit, 2011,50(6):1371-1374. doi: 10.1002/anie.v50.6

    45. [45]

      Huang X, Sheng P, Tu Z. A Two-Dimensional π-d Conjugated Coordination Polymer with Extremely High Electrical Conductivity and Ambipolar Transport Behaviour[J]. Nat Commun, 2015,67408. doi: 10.1038/ncomms8408

    46. [46]

      Jaramillo T F, Jørgensen K P, Bonde J. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2Nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483

    47. [47]

      Seh Z W, Kibsgaard J, Dickens C F. Combining Theory and Experiment in Electrocatalysis:Insights into Materials Design[J]. Science, 2017,355(6321):146-146.  

  • 加载中
    1. [1]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(11)
  • Abstract views(1629)
  • HTML views(534)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return