Coordination Complexes Based on MX4 Structure as Catalyst for Hydrogen Evolution Reaction
- Corresponding author: ZHU Jia, zhu.jia@bnu.edu.cn
Citation:
YAO Huiying, YANG Tao, HUANG Xing, ZHU Jia, LI Qing, XU Wei, CHI Lifeng. Coordination Complexes Based on MX4 Structure as Catalyst for Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry,
;2018, 35(3): 328-341.
doi:
10.11944/j.issn.1000-0518.2018.03.170453
Borup R, Meyers J, Pivovar B. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem Rev, 2007,107(10):3904-3951. doi: 10.1021/cr050182l
Amphlett J, Evans M, Jones R. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1:The Thermodynamics[J]. Can J Chem Eng, 1981,59(6):720-727. doi: 10.1002/cjce.v59:6
Steinberg M, Cheng H C. Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels[J]. Int J Hydrogen Energ, 1989,14(11):797-820. doi: 10.1016/0360-3199(89)90018-9
Bard A J, Fox M A. Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Acc Chem Res, 1995,28(3):141-145. doi: 10.1021/ar00051a007
Dresselhaus M S, Thomas I L. Alternative Energy Technologies[J]. Nature, 2001,414(6861):332-337. doi: 10.1038/35104599
Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197
Subbaraman R, Tripkovic D, Strmcnik D. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science, 2011,334(6060):1256-1260. doi: 10.1126/science.1211934
Walter M G, Warren E L, McKone J R. Solar Water Splitting Cells[J]. Chem Rev, 2010,110(11):6446-6473. doi: 10.1021/cr1002326
Cook T R, Dogutan D K, Reece S Y. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds[J]. Chem Rev, 2010,110(11):6474-6502. doi: 10.1021/cr100246c
Yin H, Zhao S, Zhao K. Ultrathin Platinum Nanowires Grown on Single-Layered Nickel Hydroxide with High Hydrogen Evolution Activity[J]. Nat Commun, 2015,66430. doi: 10.1038/ncomms7430
Conway B E, Tilak B V. Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of H2, and the Role of Chemisorbed H[J]. Electrochim Acta, 2002,47(22/23):3571-3594.
McKone J R, Marinescu S C, Brunschwig B S. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci, 2014,5(3):865-878. doi: 10.1039/C3SC51711J
Zheng Y, Jiao Y, Zhu Y. Hydrogen Evolution by a Metal-Free Electrocatalyst[J]. Nat Commun, 2014,53783.
Hu X, Cossairt B M, Brunschwig B S. Electrocatalytic Hydrogen Evolution by Cobalt Difluoroboryl-Diglyoximate Complexes[J]. Chem Commun, 2005,0(37):4723-4725.
Dempsey J L, Brunschwig B S, Winkler J R. Hydrogen Evolution Catalyzed by Cobaloximes[J]. Acc Chem Res, 2009,42(12):1995-2004. doi: 10.1021/ar900253e
McNamara W R, Han Z, Alperin P J. A Cobalt-Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons[J]. J Am Chem Soc, 2011,133(39):15368-15371. doi: 10.1021/ja207842r
Barnett S M, Goldberg K I, Mayer J M. A Soluble Copper-Bipyridine Water-Oxidation Electrocatalyst[J]. Nat Chem, 2012,4(6):498-502. doi: 10.1038/nchem.1350
McNamara W R, Han Z, Yin J C. Cobalt-Dithiolene Complexes for the Photocatalytic and Electrocatalytic Reduction of Protons in Aqueous Solutions[J]. Proc Natl Acad Sci USA, 2012,109(39):15594-15599. doi: 10.1073/pnas.1120757109
Jahan M, Liu Z, Loh K P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR[J]. Adv Funct Mater, 2013,23(43):5363-5372. doi: 10.1002/adfm.v23.43
Fang M, Engelhard M H, Zhu Z. Electrodeposition from Acidic Solutions of Nickel Bis(Benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon[J]. ACS Catal, 2014,4(1):90-98. doi: 10.1021/cs400675u
Letko C S, Panetier J A, Head-Gordon M. Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes[J]. J Am Chem Soc, 2014,136(26):9364-9376. doi: 10.1021/ja5019755
Zhang P, Wang M, Yang Y. A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution[J]. Angew Chem Int Edit, 2014,53(50):13803-13807. doi: 10.1002/anie.201408266
Clough A J, Yoo J W, Mecklenburg M H. Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water[J]. J Am Chem Soc, 2015,137(1):118-121. doi: 10.1021/ja5116937
Dong R, Pfeffermann M, Liang H. Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution[J]. Angew Chem Int Edit, 2015,54(41):12058-12063. doi: 10.1002/anie.201506048
Downes C A, Marinescu S C. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal-Organic Surface[J]. J Am Chem Soc, 2015,137(43):13740-13743. doi: 10.1021/jacs.5b07020
Downes C A, Marinescu S C. One Dimensional Metal Dithiolene(M=Ni, Fe, Zn) Coordination Polymers for the Hydrogen Evolution Reaction[J]. Dalton Trans, 2016,45(48):19311-19321. doi: 10.1039/C6DT03257E
Zarkadoulas A, Field M J, Papatriantafyllopoulou C. Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts[J]. Inorg Chem, 2016,55(2):432-444.
Dong R, Zheng Z, Tranca D C. Immobilizing Molecular Metal Dithiolene-Diamine Complexes on 2D Metal-Organic Frameworks for Electrocatalytic H2 Production[J]. Chem Eur J, 2017,23(10):2255-2260. doi: 10.1002/chem.201605337
Downes C A, Marinescu S C. Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H2 Evolution[J]. ACS Catal, 2017,7(1):848-854. doi: 10.1021/acscatal.6b03161
Downes C A, Yoo J W, Orchanian N M. H2 Evolution by a Cobalt Selenolate Electrocatalyst and Related Mechanistic Studies[J]. Chem Commun, 2017,53(53):7306-7309. doi: 10.1039/C7CC02473H
Huang X, Yao H, Cui Y. Conductive Copper Benzenehexathiol Coordination Polymer as a Hydrogen Evolution Catalyst[J]. ACS Appl Mater Interfaces, 2017,9(46):40752-40759. doi: 10.1021/acsami.7b14523
Wang L, Tranca D C, Zhang J. Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers[J]. Small, 2017,13(37):1700783-1700790. doi: 10.1002/smll.v13.37
Coggins M K, Zhang M T, Chen Z. Single-Site Copper(Ⅱ) Water Oxidation Electrocatalysis:Rate Enhancements with HPO42- as a Proton Acceptor at pH 8[J]. Angew Chem Int Edit, 2014,53(45):12226-12230. doi: 10.1002/anie.201407131
Nam N T S, Sluys M V D, Jones C W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings-Homogeneous or Heterogeneous Catalysis, a Critical Review[J]. Adv Synth Catal, 2006,348(6):609-679. doi: 10.1002/(ISSN)1615-4169
Song L C, Yang Z Y, Bian H Z. Diiron Oxadithiolate Type Models for the Active Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution Catalyzed by Fe2(SCH2OCH2S)(CO)6[J]. Organometallics, 2005,24(25):6126-6135. doi: 10.1021/om0507373
Costentin C, Sav ant J M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions:Benchmarking of Homogeneous Catalysts[J]. ChemElectroChem, 2014,1(7):1226-1236. doi: 10.1002/celc.201300263
Wiedner E S, Brown H J, Helm M L. Kinetic Analysis of Competitive Electrocatalytic Pathways:New Insights into Hydrogen Production with Nickel Electrocatalysts[J]. J Am Chem Soc, 2016,138(2):604-616. doi: 10.1021/jacs.5b10853
Zheng Y, Jiao Y, Jaroniec M. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory[J]. Angew Chem Int Edit, 2015,54(1):52-65. doi: 10.1002/anie.201407031
Nørskov J K, Bligaard T, Logadottir A. Trends in the Exchange Current for Hydrogen Evolution[J]. J Electrochem Soc, 2005,152(3):J23-J26. doi: 10.1149/1.1856988
Artero V, Fontecave M. Some General Principles for Designing Electrocatalysts with Hydrogenase Activity[J]. Coord Chem Rev, 2005,249(15/16):1518-1535.
Andreiadis E S, Jacques P A, Tran P D. Molecular Engineering of a Cobalt-Based Electrocatalytic Nanomaterial for H2 Evolution under Fully Aqueous Conditions[J]. Nat Chem, 2013,5(1):48-53. doi: 10.1038/nchem.1481
Baker-Hawkes M J, Billig E, Gray H B. Characterization and Electronic Structures of Metal Complexes Containing Benzene-1, 2-dithiolate and Related Ligands[J]. J Am Chem Soc, 1966,88(21):4870-4875. doi: 10.1021/ja00973a021
Solis B H, Hammes-Schiffer S. Computational Study of Anomalous Reduction Potentials for Hydrogen Evolution Catalyzed by Cobalt Dithiolene Complexes[J]. J Am Chem Soc, 2012,134(37):15253-15256. doi: 10.1021/ja306857q
Tran P D, Le Goff A, Heidkamp J. Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes:Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake[J]. Angew Chem Int Edit, 2011,50(6):1371-1374. doi: 10.1002/anie.v50.6
Huang X, Sheng P, Tu Z. A Two-Dimensional π-d Conjugated Coordination Polymer with Extremely High Electrical Conductivity and Ambipolar Transport Behaviour[J]. Nat Commun, 2015,67408. doi: 10.1038/ncomms8408
Jaramillo T F, Jørgensen K P, Bonde J. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2Nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483
Seh Z W, Kibsgaard J, Dickens C F. Combining Theory and Experiment in Electrocatalysis:Insights into Materials Design[J]. Science, 2017,355(6321):146-146.
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
a.homo-coupling pathway; b.hetero-coupling pathway