Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry
- Corresponding author: NIU Li, lniu@ciac.ac.cn
Citation:
GAO Lifang, SONG Zhongqian, SUN Zhonghui, LI Fenghua, HAN Dongxue, NIU Li. Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry[J]. Chinese Journal of Applied Chemistry,
;2018, 35(3): 247-258.
doi:
10.11944/j.issn.1000-0518.2018.03.170447
Novoselov K S, Geim A K, Morozov S V. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233
Geim A K, Novoselov K S. The Rise of Graphene[J]. Nat Mater, 2007,6(3):183-191. doi: 10.1038/nmat1849
Li X, Cai W, An J. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245
Tan C L, Cao X H, Wu X J. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem Rev, 2017,117(9):6225-6331. doi: 10.1021/acs.chemrev.6b00558
Zhu Y, Murali S, Stoller M D. Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011,332(6037):1537-1541. doi: 10.1126/science.1200770
Zhu C, Liu T, Qian F. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores[J]. Nano Lett, 2016,16(6):3448-3456. doi: 10.1021/acs.nanolett.5b04965
Lei Z B, Zhang J T, Zhang L L. Functionalization of Chemically Derived Graphene for Improving Its Electrocapacitive Energy Storage Properties[J]. Energy Environ Sci, 2016,9(6):1891-1930. doi: 10.1039/C6EE00158K
Rao C N R, Gopalakrishnan K, Govindaraj A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements[J]. Nano Today, 2014,9(3):324-343. doi: 10.1016/j.nantod.2014.04.010
Li M, Tang Z, Leng M. Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater, 2014,24(47):7495-7502. doi: 10.1002/adfm.v24.47
Lehtimaki S, Suominen M, Damlin P. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites[J]. ACS Appl Mater Interfaces, 2015,7(40):22137-22147. doi: 10.1021/acsami.5b05937
Fan Z, Yan J, Zhi L. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv Mater, 2010,22(33):3723-3728. doi: 10.1002/adma.201001029
Xu Y, Lin Z, Huang X. Functionalized Graphene Hydrogel-based High-Performance Supercapacitors[J]. Adv Mater, 2013,25(40):5779-5784. doi: 10.1002/adma.v25.40
Gao L, Gan S, Li H. Self-Assembling Graphene-anthraquinone-2-sulphonate Supramolecular Nanostructures with Enhanced Energy Density for Supercapacitors[J]. Nanotechnology, 2017,28(27)275602. doi: 10.1088/1361-6528/aa73b1
Lu X, Li L, Song B. Mechanistic Investigation of the Graphene Functionalization Using p-Phenylenediamine and Its Application for Supercapacitors[J]. Nano Energy, 2015,17:160-170. doi: 10.1016/j.nanoen.2015.08.011
Jana M, Saha S, Khanra P. Non-covalent Functionalization of Reduced Graphene Oxide Using Sulfanilic Acid Azocromotrop and Its Application as a Supercapacitor Electrode Material[J]. J Mater Chem A, 2015,3(14):7323-7331. doi: 10.1039/C4TA07009G
Liu J, Zhang L, Wu H B. High-performance Flexible Asymmetric Supercapacitors Based on a New Graphene Foam/Carbon Nanotube Hybrid Film[J]. Energy Environ Sci, 2014,7(11):3709-3719. doi: 10.1039/C4EE01475H
Tang Z, Tang C, Gong H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes[J]. Adv Funct Mater, 2012,22(6):1272-1278. doi: 10.1002/adfm.v22.6
Song Z, Fan Y, Sun Z. A New Strategy for Integrating Superior Mechanical Performance and High Volumetric Energy Density into a Janus Graphene Film for Wearable Solid-State Supercapacitors[J]. J Mater Chem A, 2017,5(39):20797-20807. doi: 10.1039/C7TA06040H
Zhang G, Liu H, Qu J. Two-dimensional Layered MoS2:Rational Design, Properties and Electrochemical Applications[J]. Energy Environ Sci, 2016,9(4):1190-1209. doi: 10.1039/C5EE03761A
Feng J, Sun X, Wu C. Metallic Few-layered VS2 Ultrathin Nanosheets:High Two-dimensional Conductivity for In-plane Supercapacitors[J]. J Am Chem Soc, 2011,133(44):17832-17838. doi: 10.1021/ja207176c
Ratha S, Rout C S. Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method[J]. ACS Appl Mater Interfaces, 2013,5(21):11427-11433. doi: 10.1021/am403663f
Peng L, Peng X, Liu B. Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors[J]. Nano Lett, 2013,13(5):2151-1257. doi: 10.1021/nl400600x
Xiang K, Xu Z, Qu T. Two Dimensional Oxygen-Vacancy-rich Co3O4 Nanosheets with Excellent Supercapacitor Performances[J]. Chem Commun(Camb), 2017,53(92):12410-12413. doi: 10.1039/C7CC07515D
Song D, Zhu J, Li J. Free-standing Two-dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor[J]. Electrochim Acta, 2017,257:455-464. doi: 10.1016/j.electacta.2017.10.116
Cao H, Wu N, Liu Y. Facile Synthesis of Rod-like Manganese Molybdate Crystallines with Two-dimentional Nanoflakes for Supercapacitor Application[J]. Electrochim Acta, 2017,225:605-613. doi: 10.1016/j.electacta.2017.01.021
Chen H, Hu L, Chen M. Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials[J]. Adv Funct Mater, 2014,24(7):934-942. doi: 10.1002/adfm.v24.7
Xie J, Sun X, Zhang N. Layer-by-layer β-Ni(OH)2/Graphene Nanohybrids for Ultraflexible All-solid-State Thin-Film Supercapacitors with High Electrochemical Performance[J]. Nano Energy, 2013,2(1):65-74. doi: 10.1016/j.nanoen.2012.07.016
Dong X, Wang L, Wang D. Layer-by-Layer Engineered Co-Al Hydroxide Nanosheets/Graphene Multilayer Films as Flexible Electrode for Supercapacitor[J]. Langmuir, 2012,28(1):293-298. doi: 10.1021/la2038685
Gao Z, Wang J, Li Z. Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor[J]. Chem Mater, 2011,23(15):3509-3516. doi: 10.1021/cm200975x
Xiong G, He P, Liu L. Plasma-Grown Graphene Petals Templating Ni-Co-Mn Hydroxide Nanoneedles for High-Rate and Long-Cycle-Life Pseudocapacitive Electrodes[J]. J Mater Chem A, 2015,3(45):22940-22948. doi: 10.1039/C5TA05441A
Choi D, Blomgren G E, Kumta P N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors[J]. Adv Mater, 2006,18(9):1178-1182. doi: 10.1002/(ISSN)1521-4095
Krishnamoorthy K, Pazhamalai P, Sahoo S. Titanium Carbide Sheet Based High Performance Wire Type Solid State Supercapacitors[J]. J Mater Chem A, 2017,5(12):5726-5736. doi: 10.1039/C6TA11198J
Ghidiu M, Lukatskaya M R, Zhao M Q. Conductive Two-Dimensional Titanium Carbide 'Clay' with High Volumetric Capacitance[J]. Nature, 2014,516(7529):78-81.
Ling Z, Ren C E, Zhao M Q. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance[J]. PNAS, 2014,111(47):16676-16681. doi: 10.1073/pnas.1414215111
Boota M, Anasori B, Voigt C. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole Between the Layers of 2D Titanium Carbide(MXene)[J]. Adv Mater, 2016,28(7):1517-1522. doi: 10.1002/adma.v28.7
Li H, Hou Y, Wang F. Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene[J]. Adv Energy Mater, 2017,7(4):1601847-1601853. doi: 10.1002/aenm.201601847
Yan P, Zhang R, Jia J. Enhanced Supercapacitive Performance of Delaminated Two-dimensional Titanium Carbide/Carbon Nanotube Composites in Alkaline Electrolyte[J]. J Power Sources, 2015,284:38-43. doi: 10.1016/j.jpowsour.2015.03.017
Lukatskaya M R, Kota S, Lin Z. Ultra-high-rate Pseudocapacitive Energy Storage in Two-dimensional Transition Metal Carbides[J]. Nat Energy, 2017,2(8)17105. doi: 10.1038/nenergy.2017.105
Krishnamoorthy K, Thangavel S, Chelora Veetil J. Graphdiyne Nanostructures as a New Electrode Material for Electrochemical Supercapacitors[J]. Int J Hydrogen Energy, 2016,41(3):1672-1678. doi: 10.1016/j.ijhydene.2015.10.118
Tahir M, Cao C, Butt F K. Tubular Graphitic-C3N4:A Prospective Material for Energy Storage and Green Photocatalysis[J]. J Mater Chem A, 2013,1(44)13949. doi: 10.1039/c3ta13291a
Wu C, Lu X, Peng L. Two-dimensional Vanadyl Phosphate Ultrathin Nanosheets for High Energy Density and Flexible Pseudocapacitors[J]. Nat Commun, 2013,42431.
Wang L, Han Y, Feng X. Metal-Organic Frameworks for Energy Storage:Batteries and Supercapacitors[J]. Coordin Chem Rev, 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002
Bonaccorso F, Colombo L, Yu G. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015,347(6217)1246501. doi: 10.1126/science.1246501
Ren W, Li D J, Liu H. Carbon Nanomaterials with Different Dimensions for Anode of Li-Ion Batteries[J]. Key Eng Mater, 2012,519:118-123. doi: 10.4028/www.scientific.net/KEM.519
Jiao L S, Liu J Y, Li H Y. Facile Synthesis of Reduced Graphene Oxide-Porous Silicon Composite as Superior Anode Material for Lithium-Ion Battery Anodes[J]. J Power Sources, 2016,315:9-15. doi: 10.1016/j.jpowsour.2016.03.025
Jiao L, Sun Z, Li H. Collector and Binder-free High Quality Graphene Film as a High Performance Anode for Lithium-Ion Batteries[J]. RSC Adv, 2017,7(4):1818-1821. doi: 10.1039/C6RA26111F
Peng L, Xiong P, Ma L. Holey Two-dimensional Transition Metal Oxide Nanosheets for Efficient Energy Storage[J]. Nat Commun, 2017,815139. doi: 10.1038/ncomms15139
Chang K, Chen W X, Li H. Microwave-assisted Synthesis of SnS2/SnO2 Composites by l-Cysteine and Their Electrochemical Performances when Used as Anode Materials of Li-Ion Batteries[J]. Electrochim Acta, 2011,56(7):2856-2861. doi: 10.1016/j.electacta.2010.12.073
Seo J W, Jang J T, Park S W. Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Adv Mater, 2008,20(22):4269-4273. doi: 10.1002/adma.v20:22
Chang K, Chen W. L-Cysteine-assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011,5(6):4720-4728. doi: 10.1021/nn200659w
Jing Y, Zhou Z, Cabrera C R. Metallic VS2 Monolayer:A Promising 2D Anode Material for Lithium Ion Batteries[J]. J Phys Chem C, 2013,117(48):25409-25413. doi: 10.1021/jp410969u
Bhandavat R, David L, Singh G. Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes[J]. J Phys Chem Lett, 2012,3(11):1523-1530. doi: 10.1021/jz300480w
Deng S, Wang L, Hou T. Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries[J]. J Phys Chem C, 2015,119(52):28783-28788. doi: 10.1021/acs.jpcc.5b10354
Li N, Zhou G, Fang R. TiO2/Graphene Sandwich Paper as an Anisotropic Electrode for High Rate Lithium Ion Batteries[J]. Nanoscale, 2013,5(17):7780-7784. doi: 10.1039/c3nr01349a
Liu Y, Wang W, Gu L. Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper:Binder-free Anode for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2013,5(19):9850-9855. doi: 10.1021/am403136e
Yu S H, Lee S H, Lee D J. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes[J]. Small, 2016,12(16):2146-2172. doi: 10.1002/smll.v12.16
Hu Y Y, Liu Z, Nam K W. Origin of Additional Capacities in Metal Oxide Lithium-Ion Battery Electrodes[J]. Nat Mater, 2013,12(12):1130-1136. doi: 10.1038/nmat3784
Sun D, Wang M, Li Z. Two-dimensional Ti3C2 as Anode Material for Li-Ion Batteries[J]. Electrochem Commun, 2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026
Naguib M, Come J, Dyatkin B. MXene:A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries[J]. Electrochem Commun, 2012,16(1):61-64. doi: 10.1016/j.elecom.2012.01.002
Naguib M, Halim J, Lu J. New Two-dimensional Niobium and Vanadium Carbides as Promising Materials for Li-ion Batteries[J]. J Am Chem Soc, 2013,135(43):15966-15969. doi: 10.1021/ja405735d
Liu Y, Wang W, Ying Y. Binder-free layered Ti3C2/CNTs Nanocomposite Anodes with Enhanced Capacity and Long-Cycle Life for Lithium-Ion Batteries[J]. Dalton Trans, 2015,44(16):7123-7126. doi: 10.1039/C4DT02058H
Luo J, Tao X, Zhang J. Sn(4)(+) Ion Decorated Highly Conductive Ti3C2 MXene:Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance[J]. ACS Nano, 2016,10(2):2491-2499. doi: 10.1021/acsnano.5b07333
Park C M, Sohn H J. Black Phosphorus and Its Composite for Lithium Rechargeable Batteries[J]. Adv Mater, 2007,19(18):2465-2468. doi: 10.1002/(ISSN)1521-4095
Chowdhury C, Karmakar S, Datta A. Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries[J]. ACS Energy Lett, 2016,1(1):253-259. doi: 10.1021/acsenergylett.6b00164
Wang S, Wang Q, Shao P. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries[J]. J Am Chem Soc, 2017,139(12):4258-4261. doi: 10.1021/jacs.7b02648
Karmakar S, Chowdhury C, Datta A. Two-Dimensional Group Ⅳ Monochalcogenides:Anode Materials for Li-Ion Batteries[J]. J Phys Chem C, 2016,120(27):14522-14530. doi: 10.1021/acs.jpcc.6b04152
Zhang N, Ma W, Wu T. Edge-rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution[J]. Electrochim Acta, 2015,180:155-163. doi: 10.1016/j.electacta.2015.08.108
Zhang N, Gan S, Wu T. Growth Control of MoS2 Nanosheets on Carbon Cloth for Maximum Active Edges Exposed:An Excellent Hydrogen Evolution 3D Cathode[J]. ACS Appl Mater Interfaces, 2015,7(22):12193-12202. doi: 10.1021/acsami.5b02586
Zhang N, Ma W, Jia F. Controlled Electrodeposition of CoMoSx on Carbon Cloth:A 3D Cathode for Highly-Efficient Electrocatalytic Hydrogen Evolution[J]. Int J Hydrogen Energ, 2016,41(6):3811-3819. doi: 10.1016/j.ijhydene.2015.12.173
Xie J, Zhang H, Li S. Defect-rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution[J]. Adv Mater, 2013,25(40):5807-5813. doi: 10.1002/adma.v25.40
Seh Z W, Fredrickson K D, Anasori B. Two-Dimensional Molybdenum Carbide(MXene) as an Efficient Electrocatalyst for Hydrogen Evolution[J]. ACS Energy Lett, 2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247
Huynh M, Shi C, Billinge S J. Nature of Activated Manganese Oxide for Oxygen Evolution[J]. J Am Chem Soc, 2015,137(47):14887-14904. doi: 10.1021/jacs.5b06382
McCrory C C, Jung S, Ferrer I M. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc, 2015,137(13):4347-4357. doi: 10.1021/ja510442p
Burke M S, Enman L J, Batchellor A S. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides:Activity Trends and Design Principles[J]. Chem Mater, 2015,27(22):7549-7558. doi: 10.1021/acs.chemmater.5b03148
Candelaria S L, Bedford N M, Woeh T J l. Multi-Component Fe!Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions Under Alkaline Conditions[J]. ACS Catal, 2016,7(1):365-379.
Dutta S, Indra A, Feng Y. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl Mater Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984
Wang Z, Li J, Tian X. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces, 2016,8(30):19386-19392. doi: 10.1021/acsami.6b03392
Lu Z, Qian L, Tian Y. Ternary NiFeMn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts[J]. Chem Commun, 2016,52(5):908-911. doi: 10.1039/C5CC08845C
Hou Y, Lohe M R, Zhang J. Vertically Oriented Cobalt Selenide/NiFe Layered-double-hydroxide Nanosheets Supported on Exfoliated Graphene Foil:An Efficient 3D Electrode for Overall Water Splitting[J]. Energy Environ Sci, 2016,9(2):478-483. doi: 10.1039/C5EE03440J
Xu K, Chen P, Li X. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. J Am Chem Soc, 2015,137(12):4119-4125. doi: 10.1021/ja5119495
Zhang W, Zhou K. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation[J]. Small, 2017,13(32).
Zou X, Huang X, Goswami A. Cobalt-embedded Nitrogen-rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Rreaction at All pH Values[J]. Angew Chem Int Ed Engl, 2014,53(17):4372-4376. doi: 10.1002/anie.201311111
Ma W, Han D, Zhou M. Ultrathin g-C3N4/TiO2 Composites as Photoelectrochemical Elements for the Real-Time Evaluation of Global Antioxidant Capacity[J]. Chem Sci, 2014,5(10):3946-3951. doi: 10.1039/C4SC00826J
Ma W, Wang L, Zhang N. Biomolecule-free, Selective Detection of o-Diphenol and Its Derivatives with WS2/TiO2-based Photoelectrochemical Platform[J]. Anal Chem, 2015,87(9):4844-4850. doi: 10.1021/acs.analchem.5b00315
Wang L, Ma W, Gan S. Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity Evaluation Based on Ultrasensitive Sulfonated Graphene-TiO2 Nanohybrid[J]. Anal Chem, 2014,86(20):10171-10178. doi: 10.1021/ac502181n
Huang K J, Wang L, Li J. Electrochemical Sensing Based on Layered MoS2 Graphene Composites[J]. Sensors Actuat B-Chem, 2013,178:671-677. doi: 10.1016/j.snb.2013.01.028
Bakker E, Telting-Diaz M. Electrochemical Sensors[J]. Anal Chem, 2002,74(12):2781-2800. doi: 10.1021/ac0202278
Zhu C, Yang G, Li H. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures[J]. Anal Chem, 2015,87(1):230-249. doi: 10.1021/ac5039863
Chen H, M ller M B, Gilmore K J. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper[J]. Adv Mater, 2008,20(18):3557-3561. doi: 10.1002/adma.200800757
Jiang Y, Zhang Q, Li F. Glucose Oxidase and Graphene Bionanocomposite Bridged by Ionic Liquid Unit for Glucose Biosensing Application[J]. Sens Actuators B, 2012,161(1):728-733. doi: 10.1016/j.snb.2011.11.023
Ma W, Lv X, Han D. Decoration of Electro-reduced Graphene Oxide with Uniform Gold Nanoparticles Based on in situ Diazonium Chemistry and Their Application in Methanol Oxidation[J]. J Electroanal Chem, 2013,690:111-116. doi: 10.1016/j.jelechem.2012.12.007
Zhang W, Li F, Hu Y. Perylene Derivative-Bridged Au Graphene Nanohybrid for Label-Free HpDNA Biosensor[J]. J Mater Chem B, 2014,2(20):3142-3148. doi: 10.1039/C3TB21817A
Zhong L, Gan S, Fu X. Electrochemically Controlled Growth of Silver Nanocrystals on Graphene Thin Film and Applications for Efficient Nonenzymatic H2O2 Biosensor[J]. Electrochim Acta, 2013,89:222-228. doi: 10.1016/j.electacta.2012.10.161
Wang Y H, Huang K J, Wu X. Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors:A Review[J]. Biosens Bioelectron, 2017,97:305-316. doi: 10.1016/j.bios.2017.06.011
Wu S, Zeng Z, He Q. Electrochemically Reduced Single-Layer MoS(2) Nanosheets:Characterization, Properties, and Sensing Applications[J]. Small, 2012,8(14):2264-2270. doi: 10.1002/smll.201200044
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005