Citation: GAO Lifang, SONG Zhongqian, SUN Zhonghui, LI Fenghua, HAN Dongxue, NIU Li. Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 247-258. doi: 10.11944/j.issn.1000-0518.2018.03.170447 shu

Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry

  • Corresponding author: NIU Li, lniu@ciac.ac.cn
  • Received Date: 11 December 2017
    Revised Date: 4 January 2018
    Accepted Date: 4 January 2018

    Fund Project: the National Natural Science Foundation of China for Outstanding Young Scientists 21622509National Key Scientific Instrument and Equipment Development Project 21527806Supported by the National Natural Science Foundation of China for Outstanding Young Scientists(No.21622509), National Key Scientific Instrument and Equipment Development Project(No.21527806)

Figures(3)

  • Two-dimensional nanomaterials, typically represented by graphene, have shown great application potential in various branches of electrochemistry with their unique structures and excellent electronic properties. This paper reviewed the current research development of novel two-dimensional nanomaterials in various fields of electrochemistry such as energy storage, energy conversion and electrochemical sensing. Some of the existing problems were summarized, and the development tendency of two-dimensional nanomaterials were also prospected.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233

    2. [2]

      Geim A K, Novoselov K S. The Rise of Graphene[J]. Nat Mater, 2007,6(3):183-191. doi: 10.1038/nmat1849

    3. [3]

      Li X, Cai W, An J. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245

    4. [4]

      Tan C L, Cao X H, Wu X J. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem Rev, 2017,117(9):6225-6331. doi: 10.1021/acs.chemrev.6b00558

    5. [5]

      Zhu Y, Murali S, Stoller M D. Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011,332(6037):1537-1541. doi: 10.1126/science.1200770

    6. [6]

      Zhu C, Liu T, Qian F. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores[J]. Nano Lett, 2016,16(6):3448-3456. doi: 10.1021/acs.nanolett.5b04965

    7. [7]

      Lei Z B, Zhang J T, Zhang L L. Functionalization of Chemically Derived Graphene for Improving Its Electrocapacitive Energy Storage Properties[J]. Energy Environ Sci, 2016,9(6):1891-1930. doi: 10.1039/C6EE00158K

    8. [8]

      Rao C N R, Gopalakrishnan K, Govindaraj A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements[J]. Nano Today, 2014,9(3):324-343. doi: 10.1016/j.nantod.2014.04.010

    9. [9]

      Li M, Tang Z, Leng M. Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater, 2014,24(47):7495-7502. doi: 10.1002/adfm.v24.47

    10. [10]

      Lehtimaki S, Suominen M, Damlin P. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites[J]. ACS Appl Mater Interfaces, 2015,7(40):22137-22147. doi: 10.1021/acsami.5b05937

    11. [11]

      Fan Z, Yan J, Zhi L. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv Mater, 2010,22(33):3723-3728. doi: 10.1002/adma.201001029

    12. [12]

      Xu Y, Lin Z, Huang X. Functionalized Graphene Hydrogel-based High-Performance Supercapacitors[J]. Adv Mater, 2013,25(40):5779-5784. doi: 10.1002/adma.v25.40

    13. [13]

      Gao L, Gan S, Li H. Self-Assembling Graphene-anthraquinone-2-sulphonate Supramolecular Nanostructures with Enhanced Energy Density for Supercapacitors[J]. Nanotechnology, 2017,28(27)275602. doi: 10.1088/1361-6528/aa73b1

    14. [14]

      Lu X, Li L, Song B. Mechanistic Investigation of the Graphene Functionalization Using p-Phenylenediamine and Its Application for Supercapacitors[J]. Nano Energy, 2015,17:160-170. doi: 10.1016/j.nanoen.2015.08.011

    15. [15]

      Jana M, Saha S, Khanra P. Non-covalent Functionalization of Reduced Graphene Oxide Using Sulfanilic Acid Azocromotrop and Its Application as a Supercapacitor Electrode Material[J]. J Mater Chem A, 2015,3(14):7323-7331. doi: 10.1039/C4TA07009G

    16. [16]

      Liu J, Zhang L, Wu H B. High-performance Flexible Asymmetric Supercapacitors Based on a New Graphene Foam/Carbon Nanotube Hybrid Film[J]. Energy Environ Sci, 2014,7(11):3709-3719. doi: 10.1039/C4EE01475H

    17. [17]

      Tang Z, Tang C, Gong H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes[J]. Adv Funct Mater, 2012,22(6):1272-1278. doi: 10.1002/adfm.v22.6

    18. [18]

      Song Z, Fan Y, Sun Z. A New Strategy for Integrating Superior Mechanical Performance and High Volumetric Energy Density into a Janus Graphene Film for Wearable Solid-State Supercapacitors[J]. J Mater Chem A, 2017,5(39):20797-20807. doi: 10.1039/C7TA06040H

    19. [19]

      Zhang G, Liu H, Qu J. Two-dimensional Layered MoS2:Rational Design, Properties and Electrochemical Applications[J]. Energy Environ Sci, 2016,9(4):1190-1209. doi: 10.1039/C5EE03761A

    20. [20]

      Feng J, Sun X, Wu C. Metallic Few-layered VS2 Ultrathin Nanosheets:High Two-dimensional Conductivity for In-plane Supercapacitors[J]. J Am Chem Soc, 2011,133(44):17832-17838. doi: 10.1021/ja207176c

    21. [21]

      Ratha S, Rout C S. Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method[J]. ACS Appl Mater Interfaces, 2013,5(21):11427-11433. doi: 10.1021/am403663f

    22. [22]

      Peng L, Peng X, Liu B. Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors[J]. Nano Lett, 2013,13(5):2151-1257. doi: 10.1021/nl400600x

    23. [23]

      Xiang K, Xu Z, Qu T. Two Dimensional Oxygen-Vacancy-rich Co3O4 Nanosheets with Excellent Supercapacitor Performances[J]. Chem Commun(Camb), 2017,53(92):12410-12413. doi: 10.1039/C7CC07515D

    24. [24]

      Song D, Zhu J, Li J. Free-standing Two-dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor[J]. Electrochim Acta, 2017,257:455-464. doi: 10.1016/j.electacta.2017.10.116

    25. [25]

      Cao H, Wu N, Liu Y. Facile Synthesis of Rod-like Manganese Molybdate Crystallines with Two-dimentional Nanoflakes for Supercapacitor Application[J]. Electrochim Acta, 2017,225:605-613. doi: 10.1016/j.electacta.2017.01.021

    26. [26]

      Chen H, Hu L, Chen M. Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials[J]. Adv Funct Mater, 2014,24(7):934-942. doi: 10.1002/adfm.v24.7

    27. [27]

      Xie J, Sun X, Zhang N. Layer-by-layer β-Ni(OH)2/Graphene Nanohybrids for Ultraflexible All-solid-State Thin-Film Supercapacitors with High Electrochemical Performance[J]. Nano Energy, 2013,2(1):65-74. doi: 10.1016/j.nanoen.2012.07.016

    28. [28]

      Dong X, Wang L, Wang D. Layer-by-Layer Engineered Co-Al Hydroxide Nanosheets/Graphene Multilayer Films as Flexible Electrode for Supercapacitor[J]. Langmuir, 2012,28(1):293-298. doi: 10.1021/la2038685

    29. [29]

      Gao Z, Wang J, Li Z. Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor[J]. Chem Mater, 2011,23(15):3509-3516. doi: 10.1021/cm200975x

    30. [30]

      Xiong G, He P, Liu L. Plasma-Grown Graphene Petals Templating Ni-Co-Mn Hydroxide Nanoneedles for High-Rate and Long-Cycle-Life Pseudocapacitive Electrodes[J]. J Mater Chem A, 2015,3(45):22940-22948. doi: 10.1039/C5TA05441A

    31. [31]

      Choi D, Blomgren G E, Kumta P N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors[J]. Adv Mater, 2006,18(9):1178-1182. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      Krishnamoorthy K, Pazhamalai P, Sahoo S. Titanium Carbide Sheet Based High Performance Wire Type Solid State Supercapacitors[J]. J Mater Chem A, 2017,5(12):5726-5736. doi: 10.1039/C6TA11198J

    33. [33]

      Ghidiu M, Lukatskaya M R, Zhao M Q. Conductive Two-Dimensional Titanium Carbide 'Clay' with High Volumetric Capacitance[J]. Nature, 2014,516(7529):78-81.  

    34. [34]

      Ling Z, Ren C E, Zhao M Q. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance[J]. PNAS, 2014,111(47):16676-16681. doi: 10.1073/pnas.1414215111

    35. [35]

      Boota M, Anasori B, Voigt C. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole Between the Layers of 2D Titanium Carbide(MXene)[J]. Adv Mater, 2016,28(7):1517-1522. doi: 10.1002/adma.v28.7

    36. [36]

      Li H, Hou Y, Wang F. Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene[J]. Adv Energy Mater, 2017,7(4):1601847-1601853. doi: 10.1002/aenm.201601847

    37. [37]

      Yan P, Zhang R, Jia J. Enhanced Supercapacitive Performance of Delaminated Two-dimensional Titanium Carbide/Carbon Nanotube Composites in Alkaline Electrolyte[J]. J Power Sources, 2015,284:38-43. doi: 10.1016/j.jpowsour.2015.03.017

    38. [38]

      Lukatskaya M R, Kota S, Lin Z. Ultra-high-rate Pseudocapacitive Energy Storage in Two-dimensional Transition Metal Carbides[J]. Nat Energy, 2017,2(8)17105. doi: 10.1038/nenergy.2017.105

    39. [39]

      Krishnamoorthy K, Thangavel S, Chelora Veetil J. Graphdiyne Nanostructures as a New Electrode Material for Electrochemical Supercapacitors[J]. Int J Hydrogen Energy, 2016,41(3):1672-1678. doi: 10.1016/j.ijhydene.2015.10.118

    40. [40]

      Tahir M, Cao C, Butt F K. Tubular Graphitic-C3N4:A Prospective Material for Energy Storage and Green Photocatalysis[J]. J Mater Chem A, 2013,1(44)13949. doi: 10.1039/c3ta13291a

    41. [41]

      Wu C, Lu X, Peng L. Two-dimensional Vanadyl Phosphate Ultrathin Nanosheets for High Energy Density and Flexible Pseudocapacitors[J]. Nat Commun, 2013,42431.

    42. [42]

      Wang L, Han Y, Feng X. Metal-Organic Frameworks for Energy Storage:Batteries and Supercapacitors[J]. Coordin Chem Rev, 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002

    43. [43]

      Bonaccorso F, Colombo L, Yu G. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015,347(6217)1246501. doi: 10.1126/science.1246501

    44. [44]

      Ren W, Li D J, Liu H. Carbon Nanomaterials with Different Dimensions for Anode of Li-Ion Batteries[J]. Key Eng Mater, 2012,519:118-123. doi: 10.4028/www.scientific.net/KEM.519

    45. [45]

      Jiao L S, Liu J Y, Li H Y. Facile Synthesis of Reduced Graphene Oxide-Porous Silicon Composite as Superior Anode Material for Lithium-Ion Battery Anodes[J]. J Power Sources, 2016,315:9-15. doi: 10.1016/j.jpowsour.2016.03.025

    46. [46]

      Jiao L, Sun Z, Li H. Collector and Binder-free High Quality Graphene Film as a High Performance Anode for Lithium-Ion Batteries[J]. RSC Adv, 2017,7(4):1818-1821. doi: 10.1039/C6RA26111F

    47. [47]

      Peng L, Xiong P, Ma L. Holey Two-dimensional Transition Metal Oxide Nanosheets for Efficient Energy Storage[J]. Nat Commun, 2017,815139. doi: 10.1038/ncomms15139

    48. [48]

      Chang K, Chen W X, Li H. Microwave-assisted Synthesis of SnS2/SnO2 Composites by l-Cysteine and Their Electrochemical Performances when Used as Anode Materials of Li-Ion Batteries[J]. Electrochim Acta, 2011,56(7):2856-2861. doi: 10.1016/j.electacta.2010.12.073

    49. [49]

      Seo J W, Jang J T, Park S W. Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Adv Mater, 2008,20(22):4269-4273. doi: 10.1002/adma.v20:22

    50. [50]

      Chang K, Chen W. L-Cysteine-assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011,5(6):4720-4728. doi: 10.1021/nn200659w

    51. [51]

      Jing Y, Zhou Z, Cabrera C R. Metallic VS2 Monolayer:A Promising 2D Anode Material for Lithium Ion Batteries[J]. J Phys Chem C, 2013,117(48):25409-25413. doi: 10.1021/jp410969u

    52. [52]

      Bhandavat R, David L, Singh G. Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes[J]. J Phys Chem Lett, 2012,3(11):1523-1530. doi: 10.1021/jz300480w

    53. [53]

      Deng S, Wang L, Hou T. Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries[J]. J Phys Chem C, 2015,119(52):28783-28788. doi: 10.1021/acs.jpcc.5b10354

    54. [54]

      Li N, Zhou G, Fang R. TiO2/Graphene Sandwich Paper as an Anisotropic Electrode for High Rate Lithium Ion Batteries[J]. Nanoscale, 2013,5(17):7780-7784. doi: 10.1039/c3nr01349a

    55. [55]

      Liu Y, Wang W, Gu L. Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper:Binder-free Anode for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2013,5(19):9850-9855. doi: 10.1021/am403136e

    56. [56]

      Yu S H, Lee S H, Lee D J. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes[J]. Small, 2016,12(16):2146-2172. doi: 10.1002/smll.v12.16

    57. [57]

      Hu Y Y, Liu Z, Nam K W. Origin of Additional Capacities in Metal Oxide Lithium-Ion Battery Electrodes[J]. Nat Mater, 2013,12(12):1130-1136. doi: 10.1038/nmat3784

    58. [58]

      Sun D, Wang M, Li Z. Two-dimensional Ti3C2 as Anode Material for Li-Ion Batteries[J]. Electrochem Commun, 2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026

    59. [59]

      Naguib M, Come J, Dyatkin B. MXene:A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries[J]. Electrochem Commun, 2012,16(1):61-64. doi: 10.1016/j.elecom.2012.01.002

    60. [60]

      Naguib M, Halim J, Lu J. New Two-dimensional Niobium and Vanadium Carbides as Promising Materials for Li-ion Batteries[J]. J Am Chem Soc, 2013,135(43):15966-15969. doi: 10.1021/ja405735d

    61. [61]

      Liu Y, Wang W, Ying Y. Binder-free layered Ti3C2/CNTs Nanocomposite Anodes with Enhanced Capacity and Long-Cycle Life for Lithium-Ion Batteries[J]. Dalton Trans, 2015,44(16):7123-7126. doi: 10.1039/C4DT02058H

    62. [62]

      Luo J, Tao X, Zhang J. Sn(4)(+) Ion Decorated Highly Conductive Ti3C2 MXene:Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance[J]. ACS Nano, 2016,10(2):2491-2499. doi: 10.1021/acsnano.5b07333

    63. [63]

      Park C M, Sohn H J. Black Phosphorus and Its Composite for Lithium Rechargeable Batteries[J]. Adv Mater, 2007,19(18):2465-2468. doi: 10.1002/(ISSN)1521-4095

    64. [64]

      Chowdhury C, Karmakar S, Datta A. Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries[J]. ACS Energy Lett, 2016,1(1):253-259. doi: 10.1021/acsenergylett.6b00164

    65. [65]

      Wang S, Wang Q, Shao P. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries[J]. J Am Chem Soc, 2017,139(12):4258-4261. doi: 10.1021/jacs.7b02648

    66. [66]

      Karmakar S, Chowdhury C, Datta A. Two-Dimensional Group Ⅳ Monochalcogenides:Anode Materials for Li-Ion Batteries[J]. J Phys Chem C, 2016,120(27):14522-14530. doi: 10.1021/acs.jpcc.6b04152

    67. [67]

      Zhang N, Ma W, Wu T. Edge-rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution[J]. Electrochim Acta, 2015,180:155-163. doi: 10.1016/j.electacta.2015.08.108

    68. [68]

      Zhang N, Gan S, Wu T. Growth Control of MoS2 Nanosheets on Carbon Cloth for Maximum Active Edges Exposed:An Excellent Hydrogen Evolution 3D Cathode[J]. ACS Appl Mater Interfaces, 2015,7(22):12193-12202. doi: 10.1021/acsami.5b02586

    69. [69]

      Zhang N, Ma W, Jia F. Controlled Electrodeposition of CoMoSx on Carbon Cloth:A 3D Cathode for Highly-Efficient Electrocatalytic Hydrogen Evolution[J]. Int J Hydrogen Energ, 2016,41(6):3811-3819. doi: 10.1016/j.ijhydene.2015.12.173

    70. [70]

      Xie J, Zhang H, Li S. Defect-rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution[J]. Adv Mater, 2013,25(40):5807-5813. doi: 10.1002/adma.v25.40

    71. [71]

      Seh Z W, Fredrickson K D, Anasori B. Two-Dimensional Molybdenum Carbide(MXene) as an Efficient Electrocatalyst for Hydrogen Evolution[J]. ACS Energy Lett, 2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247

    72. [72]

      Huynh M, Shi C, Billinge S J. Nature of Activated Manganese Oxide for Oxygen Evolution[J]. J Am Chem Soc, 2015,137(47):14887-14904. doi: 10.1021/jacs.5b06382

    73. [73]

      McCrory C C, Jung S, Ferrer I M. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc, 2015,137(13):4347-4357. doi: 10.1021/ja510442p

    74. [74]

      Burke M S, Enman L J, Batchellor A S. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides:Activity Trends and Design Principles[J]. Chem Mater, 2015,27(22):7549-7558. doi: 10.1021/acs.chemmater.5b03148

    75. [75]

      Candelaria S L, Bedford N M, Woeh T J l. Multi-Component Fe!Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions Under Alkaline Conditions[J]. ACS Catal, 2016,7(1):365-379.  

    76. [76]

      Dutta S, Indra A, Feng Y. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl Mater Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984

    77. [77]

      Wang Z, Li J, Tian X. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces, 2016,8(30):19386-19392. doi: 10.1021/acsami.6b03392

    78. [78]

      Lu Z, Qian L, Tian Y. Ternary NiFeMn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts[J]. Chem Commun, 2016,52(5):908-911. doi: 10.1039/C5CC08845C

    79. [79]

      Hou Y, Lohe M R, Zhang J. Vertically Oriented Cobalt Selenide/NiFe Layered-double-hydroxide Nanosheets Supported on Exfoliated Graphene Foil:An Efficient 3D Electrode for Overall Water Splitting[J]. Energy Environ Sci, 2016,9(2):478-483. doi: 10.1039/C5EE03440J

    80. [80]

      Xu K, Chen P, Li X. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. J Am Chem Soc, 2015,137(12):4119-4125. doi: 10.1021/ja5119495

    81. [81]

      Zhang W, Zhou K. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation[J]. Small, 2017,13(32).  

    82. [82]

      Zou X, Huang X, Goswami A. Cobalt-embedded Nitrogen-rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Rreaction at All pH Values[J]. Angew Chem Int Ed Engl, 2014,53(17):4372-4376. doi: 10.1002/anie.201311111

    83. [83]

      Ma W, Han D, Zhou M. Ultrathin g-C3N4/TiO2 Composites as Photoelectrochemical Elements for the Real-Time Evaluation of Global Antioxidant Capacity[J]. Chem Sci, 2014,5(10):3946-3951. doi: 10.1039/C4SC00826J

    84. [84]

      Ma W, Wang L, Zhang N. Biomolecule-free, Selective Detection of o-Diphenol and Its Derivatives with WS2/TiO2-based Photoelectrochemical Platform[J]. Anal Chem, 2015,87(9):4844-4850. doi: 10.1021/acs.analchem.5b00315

    85. [85]

      Wang L, Ma W, Gan S. Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity Evaluation Based on Ultrasensitive Sulfonated Graphene-TiO2 Nanohybrid[J]. Anal Chem, 2014,86(20):10171-10178. doi: 10.1021/ac502181n

    86. [86]

      Huang K J, Wang L, Li J. Electrochemical Sensing Based on Layered MoS2 Graphene Composites[J]. Sensors Actuat B-Chem, 2013,178:671-677. doi: 10.1016/j.snb.2013.01.028

    87. [87]

      Bakker E, Telting-Diaz M. Electrochemical Sensors[J]. Anal Chem, 2002,74(12):2781-2800. doi: 10.1021/ac0202278

    88. [88]

      Zhu C, Yang G, Li H. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures[J]. Anal Chem, 2015,87(1):230-249. doi: 10.1021/ac5039863

    89. [89]

      Chen H, M ller M B, Gilmore K J. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper[J]. Adv Mater, 2008,20(18):3557-3561. doi: 10.1002/adma.200800757

    90. [90]

      Jiang Y, Zhang Q, Li F. Glucose Oxidase and Graphene Bionanocomposite Bridged by Ionic Liquid Unit for Glucose Biosensing Application[J]. Sens Actuators B, 2012,161(1):728-733. doi: 10.1016/j.snb.2011.11.023

    91. [91]

      Ma W, Lv X, Han D. Decoration of Electro-reduced Graphene Oxide with Uniform Gold Nanoparticles Based on in situ Diazonium Chemistry and Their Application in Methanol Oxidation[J]. J Electroanal Chem, 2013,690:111-116. doi: 10.1016/j.jelechem.2012.12.007

    92. [92]

      Zhang W, Li F, Hu Y. Perylene Derivative-Bridged Au Graphene Nanohybrid for Label-Free HpDNA Biosensor[J]. J Mater Chem B, 2014,2(20):3142-3148. doi: 10.1039/C3TB21817A

    93. [93]

      Zhong L, Gan S, Fu X. Electrochemically Controlled Growth of Silver Nanocrystals on Graphene Thin Film and Applications for Efficient Nonenzymatic H2O2 Biosensor[J]. Electrochim Acta, 2013,89:222-228. doi: 10.1016/j.electacta.2012.10.161

    94. [94]

      Wang Y H, Huang K J, Wu X. Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors:A Review[J]. Biosens Bioelectron, 2017,97:305-316. doi: 10.1016/j.bios.2017.06.011

    95. [95]

      Wu S, Zeng Z, He Q. Electrochemically Reduced Single-Layer MoS(2) Nanosheets:Characterization, Properties, and Sensing Applications[J]. Small, 2012,8(14):2264-2270. doi: 10.1002/smll.201200044

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    19. [19]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(21)
  • Abstract views(4185)
  • HTML views(705)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return