Citation: LI Bao, LIU Xiaoyang, LI Fan, Esmail Husein M. Salhabib, ZHAO Jilu, WANG Bao. Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 356-365. doi: 10.11944/j.issn.1000-0518.2018.03.170443 shu

Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides

  • Corresponding author: LI Bao, libao@htu.edu.cn WANG Bao, baowang@ipe.ac.cn
  • Received Date: 7 December 2017
    Revised Date: 27 December 2017
    Accepted Date: 29 December 2017

    Fund Project: the Programme of Introducing Talents of Discipline to Universities D17007the National Natural Science Foundation of China 21203056Supported by the National Natural Science Foundation of China(No.51772296, No.51672071, No.21203056), the Programme of Introducing Talents of Discipline to Universities(No.D17007)the National Natural Science Foundation of China 51772296the National Natural Science Foundation of China 51672071

Figures(8)

  • Iron-based anode materials for lithium ion batteries has attracted wide attentions due to its high capacity, rich resource, environmentally friendly property, etc. However, its low-conductance(comparing to carbon-based anode materials) and high-volume change during charge/discharge cycles results in a poor rate performance and serious capacity fade after long-term cycles. In this paper, flower-like iron-based anode materials(Fe2O3) were synthesized by sintering the iron alkoxides precursor with the same nano-structure under the atmosphere of air. The as-obtained anode materials possess high reactivity from nanosheets of iron alkoxides, which can lower the sintering temperature and allow the product to keep the morphology of its precursor. The sample obtained by heating iron alkoxides precursor under 300℃ shows an initial specific discharge capacity of 1360 mA·h/g at a current density of 200 mA/g. Moreover, the specific capacity of the sample is 515.6 mA·h/g after 100 charge/discharge cycles at 200 mA/g, while the samples obtained after calcining the precursor under 450 and 800℃ present a capacity of 247.6 and 206.7 mA·h/g, respectively, after 100 charge/discharge cycles. The as-obtained Fe2O3 with micro/nano-structure not only improves high reactivity due to the high special surfaces, but also inhibits its pulverization during charge/discharge process. Therefore, the as-obtained materials with hollow micro/nano-structure show both high discharge capacity and good cycle performances, which affords us another method to solve the problem of the capacity fade of Fe2O3 as anode material for lithium ion battery.
  • 加载中
    1. [1]

      Lv X, Deng J, Wang B. Gamma-Fe2O3@CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy[J]. Chem Mater, 2017,29(8):3499-3506. doi: 10.1021/acs.chemmater.6b05356

    2. [2]

      Zhong Y, Fan H, Chang L. Novel Iron Oxide Nanotube Arrays as High-Performance Anodes for Lithium Ion Batteries[J]. J Power Sources, 2015,296:255-260. doi: 10.1016/j.jpowsour.2015.07.051

    3. [3]

      Wang J, Yang G, Wang L. Synthesis of One-Dimensional NiFe2O4 Nanostructures:Tunable Morphology and High-Performance Anode Materials for Li Ion Batteries[J]. J Mater Chem A, 2016,4(22):8620-8629. doi: 10.1039/C6TA02655A

    4. [4]

      Grinbom G, Duveau D, Gershinsky G. Silicon/Hollow Gamma-Fe2O3 Nanoparticles as Efficient Anodes for Li-Ion Batteries[J]. Chem Mater, 2015,27(7):2703-2710. doi: 10.1021/acs.chemmater.5b00730

    5. [5]

      Zhang Z J, Wang Y X, Chou S L. Rapid synthesis of Alpha-Fe2O3/rGO Nanocomposites by Microwave Autoclave as Superior Anodes for Sodium-Ion Batteries[J]. J Power Sources, 2015,280:107-113. doi: 10.1016/j.jpowsour.2015.01.092

    6. [6]

      Poizot P, Laruelle S, Grugeon S. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries[J]. Nature, 2000,407(6803):496-499. doi: 10.1038/35035045

    7. [7]

      Jin S, Deng H, Long D. Facile Synthesis of Hierarchically Structured Fe3O4/Carbon Micro-Flowers and Their Application to Lithium-Ion Battery Anodes[J]. J Power Sources, 2011,196(8):3887-3893. doi: 10.1016/j.jpowsour.2010.12.078

    8. [8]

      Cai D, Li D, Ding LX. Interconnected Alpha-Fe2O3 Nanosheet Arrays as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,192:407-413. doi: 10.1016/j.electacta.2016.02.010

    9. [9]

      Kong D, Cheng C, Wang Y. Seed-assisted Growth of Alpha-Fe2O3 Nanorod Arrays on Reduced Graphene Oxide:A Superior Anode for High-Performance Li-Ion and Na-Ion Batteries[J]. J Mater Chem A, 2016,4(30):11800-11811. doi: 10.1039/C6TA04370D

    10. [10]

      Wang D, Dong H, Zhang H. Enabling a High Performance of Mesoporous alpha-Fe2O3 Anodes by Building a Conformal Coating of Cyclized-PAN Network[J]. ACS Appl Mater Interfaces, 2016,8(30):19524-19532. doi: 10.1021/acsami.6b06096

    11. [11]

      Chen S, Xin Y, Zhou Y. Robust Alpha-Fe2O3 Nanorod Arrays with Optimized Interstices as High-Performance 3D Anodes for High-Rate Lithium Ion Batteries[J]. J Mater Chem A, 2015,3(25):13377-13383. doi: 10.1039/C5TA02089A

    12. [12]

      Cho J S, Hong Y J, Kang Y C. Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries[J]. ACS Nano, 2015,9(4):4026-4035. doi: 10.1021/acsnano.5b00088

    13. [13]

      Balogun M S, Wu Z, Luo Y. High Power Density Nitridated Hematite (Alpha-Fe2O3) Nanorods as Anode for High-Performance Flexible Lithium Ion Batteries[J]. J Power Sources, 2016,308:7-17. doi: 10.1016/j.jpowsour.2016.01.043

    14. [14]

      Lu J, Peng Q, Wang Z. Hematite Nanodiscs Exposing (001) Facets:Synthesis, Formation Mechanism and Application for Li-Ion Batteries[J]. J Mater Chem A, 2013,1(17):5232-5237. doi: 10.1039/c3ta01539d

    15. [15]

      Reddy M V, Yu T, Sow C H. α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries[J]. Adv Funct Mater, 2007,17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028

    16. [16]

      Jiang X, Wang Y, Herricks T. Ethylene Glycol-Mediated Synthesis of Metal Oxide Nanowires[J]. J Mater Chem, 2004,14(4):695-703. doi: 10.1039/b313938g

    17. [17]

      Chakroune N, Viau G, Ammar S. Synthesis, Characterization and Magnetic Properties of Disk-Shaped Particles of a Cobalt Alkoxide:Co(C2H4O2)[J]. New J Chem, 2005,29(2):355-361. doi: 10.1039/B411117F

    18. [18]

      Li X, Zhang B, Ju C. Morphology-Controlled Synthesis and Electromagnetic Properties of Porous Fe3O4 Nanostructures from Iron Alkoxide Precursors[J]. J Phys Chem C, 2011,115(25):12350-12357. doi: 10.1021/jp203147q

    19. [19]

      Zhong L S, Hu J S, Liang H P. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment[J]. Adv Mater, 2006,18(18):2426-2431. doi: 10.1002/(ISSN)1521-4095

    20. [20]

      Deng H G, Jin S L, Zhan L. Morphology-Controlled Synthesis of Fe3O4/Carbon Nanostructures for Lithium Ion Batteries[J]. New Carbon Mater, 2014,29(4):301-308. doi: 10.1016/S1872-5805(14)60139-6

    21. [21]

      Gao G, Lu S, Dong B. One-Pot Synthesis of Carbon Coated Fe3O4 Nanosheets with Superior Lithium Storage Capability[J]. J Mater Chem A, 2015,3(8):4716-4721. doi: 10.1039/C4TA05725B

    22. [22]

      Han Y, Wang Y, Li L. Preparation and Electrochemical Performance of Flower-Like Hematite for Lithium-Ion Batteries[J]. Electrochim Acta, 2011,56(9):3175-3181. doi: 10.1016/j.electacta.2011.01.057

    23. [23]

      Lin Y M, Abel P R, Heller A. α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries[J]. J Phys Chem Lett, 2011,2(22):2885-2891. doi: 10.1021/jz201363j

    24. [24]

      Zhou G W, Wang J, Gao P. Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes[J]. Ind Eng Chem Res, 2012,52(3):1197-1204.  

    25. [25]

      Zhu J, Yin Z, Yang D. Hierarchical Hollow Spheres Composed of Ultrathin Fe2O3 Nanosheets for Lithium Storage and Photocatalytic Water Oxidation[J]. Energ Environ Sci, 2013,6(3):987-993. doi: 10.1039/c2ee24148j

    26. [26]

      ZHANG Yu. Synthesis and Characterizations of Fe3O4 Anode Materials for Lithium Ion Batteries[D]. Changchun: Jilin University, 2014(in Chinese). 

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(1)
  • Abstract views(1577)
  • HTML views(892)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return