Citation: CHEN Qing, HAN Qing. Application of Graphene Membrane in Water Treatment[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 299-306. doi: 10.11944/j.issn.1000-0518.2018.03.170413 shu

Application of Graphene Membrane in Water Treatment

  • Corresponding author: HAN Qing, qhan@bit.edu.cn
  • Received Date: 16 November 2017
    Revised Date: 2 January 2018
    Accepted Date: 3 January 2018

    Fund Project: Supported by the National Treasury Double Top Construction 2 2050205Supported by the National Treasury Double Top Construction(No.2 2050205)

Figures(2)

  • Water saving and protection are very important for the sustainable use of water resources. Graphene, a two-dimensional monolayer sheet of sp2-bonded carbon atoms, has been widely used in water treatment in recent years due to its extraordinary electrical, mechanical, thermal properties, large specific surface area, and relatively low manufacturing cost. This paper summarized the recent advances in the synthesis and applications of graphene membrane in water treatment, and discussed the main problems and developmental trend.
  • 加载中
    1. [1]

      LUAN Yuanxin. Water Resources and Their Distribution in the World[J]. Water Res Hydropower Northeast China, 1994(10):22-24.  

    2. [2]

      Arun, Joseph, Jacangelo. Emerging Desalination Technologies for Water Treatment:A Critical Review[J]. Water Res, 2015,75:164-187. doi: 10.1016/j.watres.2015.02.032

    3. [3]

      Shannon M A, Bohn P W, Elimelech M. Science and Technology for Water Purification in the Coming Decades[J]. Nature, 2008,452(7185):301-310. doi: 10.1038/nature06599

    4. [4]

      Muniyappan R G, Subramanyan V, Atsushi S. Graphene and Graphene-Based Composites:A Rising Starin Water Purification-A Comprehensive Overview[J]. Chem Select, 2016,1:4358-4385.  

    5. [5]

      Novoselov K S, GeimA K, Mozorov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    6. [6]

      Hummers Jr W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    7. [7]

      Si Y, Samulski E T. Synthesis of Water Soluble Graphene[J]. Nano Lett, 2008,8(6):1679-1682. doi: 10.1021/nl080604h

    8. [8]

      Zhu Y, Stoller M D, Ruoff R S. Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets[J]. ACS Nano, 2010,4(2):1227-1233. doi: 10.1021/nn901689k

    9. [9]

      Guo H, Wang X, Qian Q. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d

    10. [10]

      Sheng K X, Xu Y X, Shi G Q. High-Performance Self-assembled Graphene Hydrogels Prepared by Chemical Reduction of Graphene Oxide[J]. New Carbon Mater, 2011,26(1):9-15. doi: 10.1016/S1872-5805(11)60062-0

    11. [11]

      Pei S, Zhao J, Du J. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids[J]. Carbon, 2010,48(15):4466-4474. doi: 10.1016/j.carbon.2010.08.006

    12. [12]

      Badami D.V. Graphitization of α-Silicon Carbide[J]. Nature, 1962,193:569-570. doi: 10.1038/193569a0

    13. [13]

      Berger C, Song Z, Li X. Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J]. Science, 2006,312:1191-1196. doi: 10.1126/science.1125925

    14. [14]

      Deng D H, Pan X L, Zhang H. Freestanding Graphene by Thermal Splitting of Silion Carbide Granules[J]. Adv Mater, 2010,22:2168-2171. doi: 10.1002/adma.v22:19

    15. [15]

      Li X S, Cai W W, Ruoff R S. Large-Area Synthesis of High-Quality and Uniform Graphene Fims on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245

    16. [16]

      Kim K S, Zhao Y, Jang H. Large-Scale Pattern Growth of Graphene Films For Stretchable Transparent Electrodes[J]. Nature, 2009,457:706-710. doi: 10.1038/nature07719

    17. [17]

      Reina A, Jia X, Ho J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Lett, 2009,9:30-35. doi: 10.1021/nl801827v

    18. [18]

      Wu Y P, Chou H, Ji H X. Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu-Ni Alloy Foils[J]. ACS Nano, 2012,6(9):7731-7738. doi: 10.1021/nn301689m

    19. [19]

      Sutter P W, Flege J, Sutter E A. Epitaxial Graphene on Ruthenium[J]. Nat Mater, 2008,7(5):406-411. doi: 10.1038/nmat2166

    20. [20]

      Han S, Wu D, Li S. Graphene:A Two-Dimensional Platform for Lithium Storage[J]. Small, 2013,9(8):1173-1187. doi: 10.1002/smll.201203155

    21. [21]

      Liu G P, Jin W Q, Xu N P. Graphene-based Membranes[J]. Chem Soc Rev, 2015,44(15)5016. doi: 10.1039/C4CS00423J

    22. [22]

      Robinson J T, Zalalutdinov M, Baldwin J W. Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices[J]. Nano Lett, 2008,8(10):3441-3445. doi: 10.1021/nl8023092

    23. [23]

      Wang X, Linjie Zhi, Klaus Müllen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar[J]. Nano Lett, 2008,8(1)323. doi: 10.1021/nl072838r

    24. [24]

      HOU Zhaoxia, ZHOU Yin, LI Guangbin. Preparation and Properties of Graphene Thin Films[J]. J Shenyang Univ(Nat Sci), 2015,27(1):12-16.  

    25. [25]

      Gokieda , Giovanni F, Manish C. Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat Nanotechnol, 2008,3(5):270-274. doi: 10.1038/nnano.2008.83

    26. [26]

      Xu Y X, Bai H, Shi G Q. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets[J]. J Am Chem Soc, 2008,130(18):5856-5857. doi: 10.1021/ja800745y

    27. [27]

      Li X S, Cai W W, An J. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science, ,324(5932):1312-1314. doi: 10.1126/science.1171245

    28. [28]

      Lee H C, Jo S B, Cho K. Facet-Mediated Growth of High-Quality Monolayer Graphene on Arbitrarily Rough Copper Surfaces[J]. Adv Mater, 2016,28(10):2010-2017. doi: 10.1002/adma.201504190

    29. [29]

      Viet H P, Tran V C, Seung H H. Fast and Simple Fabrication of a Large Transparent Chemically-Converted Graphene Film by Spray-Coating[J]. Carbon, 2010,48(7):1945-1951. doi: 10.1016/j.carbon.2010.01.062

    30. [30]

      Zhu Y W, Cai W W, Piner R D. Transparent Self-Assembled Films of Reduced Graphene Oxide Platelets[J]. Appl Phys Lett, 2009,95(10)103104. doi: 10.1063/1.3212862

    31. [31]

      Biswas S, Drzal L T. A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets Atthe Liquid-Liquid Interface[J]. Nano Lett, 2009,9(1):167-172. doi: 10.1021/nl802724f

    32. [32]

      Chen J, Chi F Y, Shi G Q. Synthesis of Graphene Oxide Sheets with Controlled Sizes from Sieved Graphite Flakes[J]. Carbon, 2016,110:34-40. doi: 10.1016/j.carbon.2016.08.096

    33. [33]

      Nair R R, Wu H A, Jayaram P N. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-based Membranes[J]. Science, 2012,335(6067):442-444. doi: 10.1126/science.1211694

    34. [34]

      Cohen-Tanugi D, Grossman J C. Water Desalination Across Nanoporous Graphene[J]. Nano Lett, 2012,12(7):3602-3608. doi: 10.1021/nl3012853

    35. [35]

      Sint K, Wang B, Kr l P. Selective Ion Passage Through Functionalized Graphene Nanopores[J]. J Am Chem Soc, 2008,130(49):16448-16449. doi: 10.1021/ja804409f

    36. [36]

      Mi B. Graphene Oxide Membranes for Ionic and Molecular Sieving[J]. Science, 2014,343(6172):740-742. doi: 10.1126/science.1250247

    37. [37]

      Sumedh P S, Sergei N S, Shannon M M. Water Desalination Using Nanoporous Single-Layer Graphene[J]. Nat Nanotechnol, 2015,10(5):459-464. doi: 10.1038/nnano.2015.37

    38. [38]

      Liu H Y, Wang H T, Zhang X W. Facile Fabrication of Freestanding Ultrathin Reduced Graphene Oxide Membranes for Water Purifi Cation[J]. Adv Mater, 2015,27(2):249-254. doi: 10.1002/adma.v27.2

    39. [39]

      Han Y, Jiang Y, Gao C. High-fluxgraphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes[J]. ACS Appl MaterInterfaces, 2015,7(15):8147-8155. doi: 10.1021/acsami.5b00986

    40. [40]

      Zheng S X, Mi B X. Emerging Investigators Series:Silica-crosslinked Graphene Oxide Membrane and Its Unique Capability in Removing Neutral Organic Molecules from Water[J]. Environ Sci:Water Res Technol, 2016,2:717-718. doi: 10.1039/C6EW00070C

    41. [41]

      David C T, Li C L, Jeffrey C G. Multilayer Nanoporous Graphene Membranes for Water Desalination[J]. Nano Lett, 2016,16(2):1027-1033. doi: 10.1021/acs.nanolett.5b04089

    42. [42]

      Piran R K, Doojoon J, JuanC I. Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications[J]. Adv Mater, 2017,29(33)1700277. doi: 10.1002/adma.201700277

    43. [43]

      Zhao G X, Li J X, Wang X K. Few-Layered Graphene Oxide Nanosheets as Superior Sorbentsfor Heavy Metal Ion Pollution Management[J]. Environ Sci Technol, 2011,45(24):10454-10462. doi: 10.1021/es203439v

    44. [44]

      Li Z J, Chen F, Yuan L Y. Uranium(Ⅵ) Adsorption on Graphene Oxide Nanosheets from Aqueous Solutions[J]. Chem Eng J, 2012,210(6):539-546.  

    45. [45]

      Zhao G X, Lang J, Hu W P. Sulfonated Graphene for Persistent Aromatic Pollutant Management[J]. Adv Mater, 2011,23(34):3959-3963. doi: 10.1002/adma.v23.34

    46. [46]

      Wang J, Chen Z M, Chen B L. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets[J]. Environ Sci Technol, 2014,48(9):4817-4825. doi: 10.1021/es405227u

    47. [47]

      Li J, Li J X, Wang X K. Removal of Cu(Ⅱ) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles[J]. ACS Appl Mater Interfaces, 2012,4(9):4991-5000. doi: 10.1021/am301358b

    48. [48]

      François P, Andreia de F A, Elimelech M. Environmental Applications of Graphene-based Nanomaterials[J]. Chem Soc Rev, 2015,44(16):5861-5896. doi: 10.1039/C5CS00021A

    49. [49]

      Zhang K, Kemp K C, Chandra V. Homogeneous Anchoring of TiO2 Nanoparticles on Graphene Sheets for Waste Water Treatment[J]. Mater Lett, 2012,81(3):127-130.  

    50. [50]

      Liang Y Y, Wang H L, Dai H J. TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials[J]. Nano Res, 2010,3(10):701-705. doi: 10.1007/s12274-010-0033-5

    51. [51]

      Liu X J, PanL K, SunC Q. Microwave-assisted Synthesis of ZnO-Graphene Composite for Photocatalytic Reduction of Cr(Ⅵ)[J]. Catal Sci Technol, 2011,1(7):1189-1193. doi: 10.1039/c1cy00109d

    52. [52]

      Porada S, Zhao R, van der Wal A. Review on the Science and Technology of Water Desalination by Capacitive Deionization[J]. Prog Mater Sci, 2013,58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005

    53. [53]

      Li H B, Lu T, Sun Z. Electrosorption Behavior of Graphene in NaCl Solutions[J]. J Mater Chem, 2009,19(37):6773-6779. doi: 10.1039/b907703k

    54. [54]

      Yan C J, Yasodinee W K, Zou L D. Graphene/Polyaniline Nanocomposite as Electrode Material for Membrane Capacitive Deionization[J]. Desalination, 2014,344(344):274-279.  

    55. [55]

      Zhang D S, Wen X R, Shi L Y. Enhanced Capacitive Deionizationof Graphene/Mesoporous Carbon Composites[J]. Nanoscale, 2012,4(17):5440-5446. doi: 10.1039/c2nr31154b

  • 加载中
    1. [1]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    7. [7]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    17. [17]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    18. [18]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(6)
  • Abstract views(799)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return