Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing
- Corresponding author: HAN Qing, qhan@bit.edu.cn QU Liangti, lqu@bit.edu.cn
Citation:
CHEN Liwei, HAN Qing, ZHANG Huimin, QU Liangti. Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing[J]. Chinese Journal of Applied Chemistry,
;2018, 35(3): 286-298.
doi:
10.11944/j.issn.1000-0518.2018.03.170399
PING Jianfeng. Rapid Detection Method and Instrument for Dairy Safety and Quality Based on Nanofunctional Materials[D]. Hnagzhou: Zhejiang University, 2012(in Chinese).
Wightman R M. Microvoltammetric Electrodes[J]. Anal Chem, 1981,53(9):1125A-1134A. doi: 10.1021/ac00232a791
Fleischmann M, Lasserre F, Robinson J. The Application of Microelectrodes to the Study of Homogeneous Processes Coupled to Electrode Reactions:Part Ⅱ.ECE and DISP 1 Reactions[J]. J Electroanal Chem, 1984,177(1):115-127.
Ahn B Y, Lewis J A. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes[J]. Science, 2009,323(5921):1590-1593. doi: 10.1126/science.1168375
Bond A M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review[J]. Analyst, 1994,119(11):1R-21R. doi: 10.1039/an994190001r
Balandin A A, Ghosh S, Bao W. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett, 2008,8(3):902-907. doi: 10.1021/nl0731872
Chen H, Müller M B, Gilmore K J. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper[J]. Adv Mater, 2010,20(18):3557-3561.
Chen D, Feng H, Li J. Graphene Oxide:Preparation, Functionalization, and Electrochemical Applications[J]. Chem Rev, 2012,112(11):6027-6053. doi: 10.1021/cr300115g
Liu Y, Dong X, Chen P. Biological and Chemical Sensors Based on Graphene Materials[J]. Chem Soc Rev, 2012,41(6):2283-2307. doi: 10.1039/C1CS15270J
Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
An X, Yu J C. Graphene-based Photocatalytic Composites[J]. RSC Adv, 2011,1:1426-1434. doi: 10.1039/c1ra00382h
Wan X, Huang Y, Chen Y. Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale[J]. Acc Chem Res, 2012,45(4):598-607. doi: 10.1021/ar200229q
Lee S H, Dreyer D R, An J. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization(ATRP) from Graphene Oxide[J]. Macromol Rapid Commun, 2010,31(3):281-288. doi: 10.1002/marc.v31:3
Ambrosi A, Chee S Y, Khezri B. Metallic Impurities in Graphenes Prepared from Graphite can Dramatically Influence their Properties[J]. Angew Chem, 2012,51(2):500-503. doi: 10.1002/anie.201106917
Hammers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6)1339. doi: 10.1021/ja01539a017
Bai H, Li C, Shi G. Functional Composite Materials Based on Chemically Converted Graphene[J]. Adv Mater, 2015,23(9):1089-1115.
Zhu Y, Murali S, Cai W. Graphene-based Materials:Graphene and Graphene Oxide:Synthesis, Properties, and Applications[J]. Adv Mater, 2010,22(35):3906-3924. doi: 10.1002/adma.201001068
Eda G, Ball J, Mattevi C. Partially Oxidized Graphene as a Precursor to Graphene[J]. J Mater Chem, 2011,21(30):11217-11223. doi: 10.1039/c1jm11266j
Marcano D C, Kosynkin D V, Berlin J M. Improved Synthesis of Graphene Oxide[J]. ACS Nano, 2010,4(8):4806-4814. doi: 10.1021/nn1006368
Xu Y, Sheng K, Li C. Highly Conductive Chemically Converted Graphene Prepared from Mildly Oxidized Graphene Oxide[J]. J Mater Chem, 2011,21(20):7376-7380. doi: 10.1039/c1jm10768b
Ambrosi A, Chua C K, Bonanni A. Electrochemistry of Graphene and Related Materials[J]. Chem Rev, 2014,114(14):7150-7188. doi: 10.1021/cr500023c
Park S, An J, Jung I. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J]. Nano Lett, 2009,9(4):1593-1597. doi: 10.1021/nl803798y
Scott G, Han S, Wang M S. A Chemical Route to Graphene for Device Applications[J]. Nano Lett, 2007,7(11):3394-3398. doi: 10.1021/nl0717715
Shin H J, Kim K K, Benayad A. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance[J]. Adv Funct Mater, 2009,19(12):1987-1992. doi: 10.1002/adfm.v19:12
Stankovich S, Dikin D A, Piner R D. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon, 2007,45(7):1558-1565. doi: 10.1016/j.carbon.2007.02.034
Liao K H, Lin Y S, Macosko C W. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts[J]. ACS Appl Mater Interfaces, 2011,3(7):2607-2615. doi: 10.1021/am200428v
Zhang J, Yang H, Shen G. Reduction of Graphene Oxide via L-Ascorbic Acid[J]. Chem Commun, 2010,46(7):1112-1114. doi: 10.1039/B917705A
Zhou X, Zhang J, Wu H. Reducing Graphene Oxide via Hydroxylamine:A Simple and Efficient Route to Graphene[J]. J Phys Chem C, 2011,115(24):11957-11961. doi: 10.1021/jp202575j
Zhao J, Pei S, Ren W. Efficient Preparation of Large-area Graphene Oxide Sheets for Transparent Conductive Films[J]. ACS Nano, 2010,4(9):5245-5252. doi: 10.1021/nn1015506
Pei S, Zhao J, Du J. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids[J]. Carbon, 2010,48(15):4466-4474. doi: 10.1016/j.carbon.2010.08.006
Rao C N R, Sood A K, Subrahmanyam K S. Graphen, Das Neue Zweidimensionale Nanomaterial[J]. Angew Chem, 2009,121(42):7890-7916. doi: 10.1002/ange.v121:42
Li D, Müller M B, Gilje S. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol, 2008,3(2):101-105. doi: 10.1038/nnano.2007.451
Stankovich S, Piner R D, Chen X. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate)[J]. J Mater Chem, 2006,16(2):155-158. doi: 10.1039/B512799H
Dey R S, Hajra S, Sahu R K. A Rapid Room Temperature Chemical Route for the Synthesis of Graphene:Metal-mediated Reduction of Graphene Oxide[J]. Chem Commun, 2012,48(12):1787-1789. doi: 10.1039/c2cc16031e
Guo H L, Wang X F, Qian Q Y. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d
Yang M, Jiang T J, Wang Y. Enhanced Electrochemical Sensing Arsenic(Ⅲ) with Excellent Anti-interference Using Amino-functionalized Graphene Oxide Decorated Gold Microelectrode:XPS and XANES Evidence[J]. Sens Actuators B, 2017,245:230-237. doi: 10.1016/j.snb.2017.01.139
Zhu M, Zeng C, Ye J. Graphene-Modified Carbon Fiber Microelectrode for the Detection of Dopamine in Mice Hippocampus Tissue[J]. Electroanalysis, 2011,23(4):907-914. doi: 10.1002/elan.201000712
Fang J, Xie Z, Wallace G. Co-deposition of Carbon Dots and Reduced Graphene Oxide Nanosheets on Carbon-fiber Microelectrode Surface for Selective Detection of Dopamine[J]. Appl Surf Sci, 2017,412:131-137. doi: 10.1016/j.apsusc.2017.03.257
Wang L, Xu H, Song Y. Highly Sensitive Detection of Quantal Dopamine Secretion from Pheochromocytoma Cells Using Neural Microelectrode Array Electrodeposited with Polypyrrole Graphene[J]. ACS Appl Mater Interfaces, 2015,7(14):7619-7626. doi: 10.1021/acsami.5b00035
Shi Y, Li X, Ye M. An Imperata Cylindrical Flowers-Shaped Porous Graphene Microelectrode for Direct Electrochemistry of Glucose Oxidase[J]. J Electrochem Soc, 2015,162(7):B138-B144. doi: 10.1149/2.0251507jes
Li X, Jiang Y, Xu B. Glucose Oxidase Immobilization by Volume Shrinkage of Graphene as "Door-Function" Microelectrode[J]. J Electrochem Soc, 2016,163(5):B169-B175. doi: 10.1149/2.0851605jes
Bai J, Qi P, Ding X. Graphene Composite Coated Carbon Fiber:Electrochemical Synthesis and Application in Electrochemical Sensing[J]. RSC Adv, 2016,6(14):11250-11255. doi: 10.1039/C5RA26620C
Bai J, Wu L, Wang X. Hemoglobin-Graphene Modified Carbon Fiber Microelectrode for Direct Electrochemistry and Electrochemical H2O2 Sensing[J]. Electrochim Acta, 2015,185:142-147. doi: 10.1016/j.electacta.2015.10.100
Yu Y, Chen J, Zhou J. Enzyme-free Electroreduction of Hydrogen Peroxide at Polypyrrole/Graphene/Au Microelectrode Based on Three-electrode-system Array[C]. IEEE-Nano, 2013: 1067-1070.
Abdurhman A A M, Zhang Y, Zhang G. Hierarchical Nanostructured Noble Metal/Metal Oxide/Graphene-coated Carbon Fiber:In Situ Electrochemical Synthesis and Use as Microelectrode for Real-time Molecular Detection of Cancer Cells[J]. Anal Bioanal Chem, 2015,407(26):8129-8136. doi: 10.1007/s00216-015-8989-3
Wang L, Dong Y, Zhang Y. PtAu Alloy Nanoflowers on 3D Porous Ionic Liquid Functionalized Graphene-wrapped Activated Carbon Fiber as a Flexible Microelectrode for Near-cell Detection of Cancer[J]. NPG Asia Mater, 2016,8(337):1-11.
Ng A M, Kenry , Teck L C. Highly Sensitive Reduced Graphene Oxide Microelectrode Array Sensor[J]. Biosens Bioelectron, 2015,65:265-273. doi: 10.1016/j.bios.2014.10.048
Li F, Xue M, Ma X. Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing[J]. Anal Chem, 2011,83(16):6426-6430. doi: 10.1021/ac200939g
Xing X, Faruk H M, Yeong P J. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide[J]. Sci Rep, 2016,6(33125):1-8.
Dickinson J W, Andrieux F, Ferrer M, et al. Fabrication and Characterisation of Graphene and Its Use in Formation of Graphene Ring Microelectrodes(GRiMEs)[C]. ECS Meeting, 2013, 53(14): 11-22.
Ding X, Bai J, Xu T. A Novel Nitrogen-doped Graphene Fiber Microelectrode with Ultrahigh Sensitivity for the Detection of Dopamine[J]. Electrochem Commun, 2016,72:122-125. doi: 10.1016/j.elecom.2016.09.021
Ding X, Xu T, Gao J. Dimensional Confinement of Graphene in a Polypyrrole Microbowl for Sensor Applications[J]. J Mater Chem B, 2017,5:5733-5737. doi: 10.1039/C7TB01125C
Chen R S, Huang W H, Tong H. Carbon Fiber Nanoelectrodes Modified by Single-walled Carbon Nanotubes[J]. Anal Chem, 2003,75(22):6341-6345. doi: 10.1021/ac0340556
Michael H A. An Arsenic Forecast for China[J]. Science, 2013,341(6148):852-853. doi: 10.1126/science.1242212
Nordstrom D K. Worldwide Occurrences of Arsenic in Ground Water[J]. Science, 2002,296(5576):2143-2145. doi: 10.1126/science.1072375
Gumpu M B, Sethuraman S, Krishnan U M. A Review on Detection of Heavy Metal Ions in Water-An Electrochemical Approach[J]. Sens Actuators B, 2015,213(3):515-533.
Wightman R M, May L J, Michael A C. Detection of Dopamine Dynamics in the Brain[J]. Anal Chem, 1988,60(13):769A-779A. doi: 10.1021/ac00164a718
Damier P, Hirsch E C, Agid Y. The Substantia Nigra of the Human Brain[J]. Brain, 1999,122(8):1421-1436. doi: 10.1093/brain/122.8.1421
Adams R N. Probing Brain Chemistry with Electroanalytical Techniques[J]. Anal Chem, 1976,48(14):1126A-1138A. doi: 10.1021/ac50008a001
Boulton A A, Baker G B, Adams R N. Voltammetric Methods in Brain Systems[M]. New Jersey:Humana Press, 1995:153-154.
Wang J. Electrochemical Glucose Biosensors[J]. Chem Rev, 2008,108(2):814-825. doi: 10.1021/cr068123a
Wang J. Glucose Biosensors:40 Years of Advances and Challenges[J]. Electroanalysis, 2010,13(12):983-988.
Zhang Y, Zhang L, Zhou C. Review of Chemical Vapor Deposition of Graphene and Related Applications[J]. Acc Chem Res, 2013,46:2329-2339. doi: 10.1021/ar300203n
Tang L, Li Y, Hui X. A Sensitive Acupuncture Needle Microsensor for Real-time Monitoring of Nitric Oxide in Acupoints of Rats[J]. Sci Rep, 2017,7(6446):1-10.
Du X, Wu L, Cheng J. Graphene Microelectrode Arrays for Neural Activity Detection[J]. J Biol Phys, 2015,41(4):339-347. doi: 10.1007/s10867-015-9382-3
Zhao S, Liu X, Zheng X. Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes[J]. Nano Lett, 2016,16(12):7731-7738. doi: 10.1021/acs.nanolett.6b03829
Ping J, Blum J E, Vishnubhotla R. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids:From Phosphate Buffer Solution to Human Serum[J]. Small, 2017:1-22.
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059