Citation: CHEN Liwei, HAN Qing, ZHANG Huimin, QU Liangti. Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 286-298. doi: 10.11944/j.issn.1000-0518.2018.03.170399 shu

Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing

  • Corresponding author: HAN Qing, qhan@bit.edu.cn QU Liangti, lqu@bit.edu.cn
  • Received Date: 7 November 2017
    Revised Date: 13 December 2017
    Accepted Date: 27 December 2017

    Fund Project: Beijing Natural Science Foundation 2152028State Key Basic Research Program 2017YFB1104300the National Natural Science Foundation of China 51673026the National Treasury Double Top Construction 2 2050205the National Natural Science Foundation of China 21575014Supported by the National Natural Science Foundation of China(No.21325415, No.51673026, No.21575014), State Key Basic Research Program(No.2017YFB1104300), Beijing Natural Science Foundation(No.2152028), the National Treasury(No.2 2050205) Double Top Constructionthe National Natural Science Foundation of China 21325415

Figures(12)

  • Due to the high sensitivity, fast response, less sample usage, and simple operation, microelectrodes have attracted increasing attention in the fields of chemical analysis, biomedicine, food safety and environmental monitor recently. Given its high specific surface area, excellent electron mobility and good biocompatibility, graphene has shown a huge development potential in the field of electrochemical sensing. This review summarizes recent advances in the preparations and applications of graphene-based microelectrodes(including graphene modified microelectrode and graphene microelectrode) in sensing, such as the detection of heavy metal ions, dopamine, glucose, H2O2 and other molecules. Simultaneously, the major problems and opportunities of these graphene-based microelectrodes in sensing for future development are also discussed.
  • 加载中
    1. [1]

      PING Jianfeng. Rapid Detection Method and Instrument for Dairy Safety and Quality Based on Nanofunctional Materials[D]. Hnagzhou: Zhejiang University, 2012(in Chinese). 

    2. [2]

      Wightman R M. Microvoltammetric Electrodes[J]. Anal Chem, 1981,53(9):1125A-1134A. doi: 10.1021/ac00232a791

    3. [3]

      Fleischmann M, Lasserre F, Robinson J. The Application of Microelectrodes to the Study of Homogeneous Processes Coupled to Electrode Reactions:Part Ⅱ.ECE and DISP 1 Reactions[J]. J Electroanal Chem, 1984,177(1):115-127.  

    4. [4]

      Ahn B Y, Lewis J A. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes[J]. Science, 2009,323(5921):1590-1593. doi: 10.1126/science.1168375

    5. [5]

      Bond A M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review[J]. Analyst, 1994,119(11):1R-21R. doi: 10.1039/an994190001r

    6. [6]

      Balandin A A, Ghosh S, Bao W. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett, 2008,8(3):902-907. doi: 10.1021/nl0731872

    7. [7]

      Chen H, Müller M B, Gilmore K J. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper[J]. Adv Mater, 2010,20(18):3557-3561.  

    8. [8]

      Chen D, Feng H, Li J. Graphene Oxide:Preparation, Functionalization, and Electrochemical Applications[J]. Chem Rev, 2012,112(11):6027-6053. doi: 10.1021/cr300115g

    9. [9]

      Liu Y, Dong X, Chen P. Biological and Chemical Sensors Based on Graphene Materials[J]. Chem Soc Rev, 2012,41(6):2283-2307. doi: 10.1039/C1CS15270J

    10. [10]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    11. [11]

      An X, Yu J C. Graphene-based Photocatalytic Composites[J]. RSC Adv, 2011,1:1426-1434. doi: 10.1039/c1ra00382h

    12. [12]

      Wan X, Huang Y, Chen Y. Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale[J]. Acc Chem Res, 2012,45(4):598-607. doi: 10.1021/ar200229q

    13. [13]

      Lee S H, Dreyer D R, An J. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization(ATRP) from Graphene Oxide[J]. Macromol Rapid Commun, 2010,31(3):281-288. doi: 10.1002/marc.v31:3

    14. [14]

      Ambrosi A, Chee S Y, Khezri B. Metallic Impurities in Graphenes Prepared from Graphite can Dramatically Influence their Properties[J]. Angew Chem, 2012,51(2):500-503. doi: 10.1002/anie.201106917

    15. [15]

      Hammers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6)1339. doi: 10.1021/ja01539a017

    16. [16]

      Bai H, Li C, Shi G. Functional Composite Materials Based on Chemically Converted Graphene[J]. Adv Mater, 2015,23(9):1089-1115.  

    17. [17]

      Zhu Y, Murali S, Cai W. Graphene-based Materials:Graphene and Graphene Oxide:Synthesis, Properties, and Applications[J]. Adv Mater, 2010,22(35):3906-3924. doi: 10.1002/adma.201001068

    18. [18]

      Eda G, Ball J, Mattevi C. Partially Oxidized Graphene as a Precursor to Graphene[J]. J Mater Chem, 2011,21(30):11217-11223. doi: 10.1039/c1jm11266j

    19. [19]

      Marcano D C, Kosynkin D V, Berlin J M. Improved Synthesis of Graphene Oxide[J]. ACS Nano, 2010,4(8):4806-4814. doi: 10.1021/nn1006368

    20. [20]

      Xu Y, Sheng K, Li C. Highly Conductive Chemically Converted Graphene Prepared from Mildly Oxidized Graphene Oxide[J]. J Mater Chem, 2011,21(20):7376-7380. doi: 10.1039/c1jm10768b

    21. [21]

      Ambrosi A, Chua C K, Bonanni A. Electrochemistry of Graphene and Related Materials[J]. Chem Rev, 2014,114(14):7150-7188. doi: 10.1021/cr500023c

    22. [22]

      Park S, An J, Jung I. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J]. Nano Lett, 2009,9(4):1593-1597. doi: 10.1021/nl803798y

    23. [23]

      Scott G, Han S, Wang M S. A Chemical Route to Graphene for Device Applications[J]. Nano Lett, 2007,7(11):3394-3398. doi: 10.1021/nl0717715

    24. [24]

      Shin H J, Kim K K, Benayad A. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance[J]. Adv Funct Mater, 2009,19(12):1987-1992. doi: 10.1002/adfm.v19:12

    25. [25]

      Stankovich S, Dikin D A, Piner R D. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon, 2007,45(7):1558-1565. doi: 10.1016/j.carbon.2007.02.034

    26. [26]

      Liao K H, Lin Y S, Macosko C W. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts[J]. ACS Appl Mater Interfaces, 2011,3(7):2607-2615. doi: 10.1021/am200428v

    27. [27]

      Zhang J, Yang H, Shen G. Reduction of Graphene Oxide via L-Ascorbic Acid[J]. Chem Commun, 2010,46(7):1112-1114. doi: 10.1039/B917705A

    28. [28]

      Zhou X, Zhang J, Wu H. Reducing Graphene Oxide via Hydroxylamine:A Simple and Efficient Route to Graphene[J]. J Phys Chem C, 2011,115(24):11957-11961. doi: 10.1021/jp202575j

    29. [29]

      Zhao J, Pei S, Ren W. Efficient Preparation of Large-area Graphene Oxide Sheets for Transparent Conductive Films[J]. ACS Nano, 2010,4(9):5245-5252. doi: 10.1021/nn1015506

    30. [30]

      Pei S, Zhao J, Du J. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids[J]. Carbon, 2010,48(15):4466-4474. doi: 10.1016/j.carbon.2010.08.006

    31. [31]

      Rao C N R, Sood A K, Subrahmanyam K S. Graphen, Das Neue Zweidimensionale Nanomaterial[J]. Angew Chem, 2009,121(42):7890-7916. doi: 10.1002/ange.v121:42

    32. [32]

      Li D, Müller M B, Gilje S. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol, 2008,3(2):101-105. doi: 10.1038/nnano.2007.451

    33. [33]

      Stankovich S, Piner R D, Chen X. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate)[J]. J Mater Chem, 2006,16(2):155-158. doi: 10.1039/B512799H

    34. [34]

      Dey R S, Hajra S, Sahu R K. A Rapid Room Temperature Chemical Route for the Synthesis of Graphene:Metal-mediated Reduction of Graphene Oxide[J]. Chem Commun, 2012,48(12):1787-1789. doi: 10.1039/c2cc16031e

    35. [35]

      Guo H L, Wang X F, Qian Q Y. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d

    36. [36]

      Yang M, Jiang T J, Wang Y. Enhanced Electrochemical Sensing Arsenic(Ⅲ) with Excellent Anti-interference Using Amino-functionalized Graphene Oxide Decorated Gold Microelectrode:XPS and XANES Evidence[J]. Sens Actuators B, 2017,245:230-237. doi: 10.1016/j.snb.2017.01.139

    37. [37]

      Zhu M, Zeng C, Ye J. Graphene-Modified Carbon Fiber Microelectrode for the Detection of Dopamine in Mice Hippocampus Tissue[J]. Electroanalysis, 2011,23(4):907-914. doi: 10.1002/elan.201000712

    38. [38]

      Fang J, Xie Z, Wallace G. Co-deposition of Carbon Dots and Reduced Graphene Oxide Nanosheets on Carbon-fiber Microelectrode Surface for Selective Detection of Dopamine[J]. Appl Surf Sci, 2017,412:131-137. doi: 10.1016/j.apsusc.2017.03.257

    39. [39]

      Wang L, Xu H, Song Y. Highly Sensitive Detection of Quantal Dopamine Secretion from Pheochromocytoma Cells Using Neural Microelectrode Array Electrodeposited with Polypyrrole Graphene[J]. ACS Appl Mater Interfaces, 2015,7(14):7619-7626. doi: 10.1021/acsami.5b00035

    40. [40]

      Shi Y, Li X, Ye M. An Imperata Cylindrical Flowers-Shaped Porous Graphene Microelectrode for Direct Electrochemistry of Glucose Oxidase[J]. J Electrochem Soc, 2015,162(7):B138-B144. doi: 10.1149/2.0251507jes

    41. [41]

      Li X, Jiang Y, Xu B. Glucose Oxidase Immobilization by Volume Shrinkage of Graphene as "Door-Function" Microelectrode[J]. J Electrochem Soc, 2016,163(5):B169-B175. doi: 10.1149/2.0851605jes

    42. [42]

      Bai J, Qi P, Ding X. Graphene Composite Coated Carbon Fiber:Electrochemical Synthesis and Application in Electrochemical Sensing[J]. RSC Adv, 2016,6(14):11250-11255. doi: 10.1039/C5RA26620C

    43. [43]

      Bai J, Wu L, Wang X. Hemoglobin-Graphene Modified Carbon Fiber Microelectrode for Direct Electrochemistry and Electrochemical H2O2 Sensing[J]. Electrochim Acta, 2015,185:142-147. doi: 10.1016/j.electacta.2015.10.100

    44. [44]

      Yu Y, Chen J, Zhou J. Enzyme-free Electroreduction of Hydrogen Peroxide at Polypyrrole/Graphene/Au Microelectrode Based on Three-electrode-system Array[C]. IEEE-Nano, 2013: 1067-1070.

    45. [45]

      Abdurhman A A M, Zhang Y, Zhang G. Hierarchical Nanostructured Noble Metal/Metal Oxide/Graphene-coated Carbon Fiber:In Situ Electrochemical Synthesis and Use as Microelectrode for Real-time Molecular Detection of Cancer Cells[J]. Anal Bioanal Chem, 2015,407(26):8129-8136. doi: 10.1007/s00216-015-8989-3

    46. [46]

      Wang L, Dong Y, Zhang Y. PtAu Alloy Nanoflowers on 3D Porous Ionic Liquid Functionalized Graphene-wrapped Activated Carbon Fiber as a Flexible Microelectrode for Near-cell Detection of Cancer[J]. NPG Asia Mater, 2016,8(337):1-11.

    47. [47]

      Ng A M, Kenry , Teck L C. Highly Sensitive Reduced Graphene Oxide Microelectrode Array Sensor[J]. Biosens Bioelectron, 2015,65:265-273. doi: 10.1016/j.bios.2014.10.048

    48. [48]

      Li F, Xue M, Ma X. Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing[J]. Anal Chem, 2011,83(16):6426-6430. doi: 10.1021/ac200939g

    49. [49]

      Xing X, Faruk H M, Yeong P J. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide[J]. Sci Rep, 2016,6(33125):1-8.

    50. [50]

      Dickinson J W, Andrieux F, Ferrer M, et al. Fabrication and Characterisation of Graphene and Its Use in Formation of Graphene Ring Microelectrodes(GRiMEs)[C]. ECS Meeting, 2013, 53(14): 11-22.

    51. [51]

      Ding X, Bai J, Xu T. A Novel Nitrogen-doped Graphene Fiber Microelectrode with Ultrahigh Sensitivity for the Detection of Dopamine[J]. Electrochem Commun, 2016,72:122-125. doi: 10.1016/j.elecom.2016.09.021

    52. [52]

      Ding X, Xu T, Gao J. Dimensional Confinement of Graphene in a Polypyrrole Microbowl for Sensor Applications[J]. J Mater Chem B, 2017,5:5733-5737. doi: 10.1039/C7TB01125C

    53. [53]

      Chen R S, Huang W H, Tong H. Carbon Fiber Nanoelectrodes Modified by Single-walled Carbon Nanotubes[J]. Anal Chem, 2003,75(22):6341-6345. doi: 10.1021/ac0340556

    54. [54]

      Michael H A. An Arsenic Forecast for China[J]. Science, 2013,341(6148):852-853. doi: 10.1126/science.1242212

    55. [55]

      Nordstrom D K. Worldwide Occurrences of Arsenic in Ground Water[J]. Science, 2002,296(5576):2143-2145. doi: 10.1126/science.1072375

    56. [56]

      Gumpu M B, Sethuraman S, Krishnan U M. A Review on Detection of Heavy Metal Ions in Water-An Electrochemical Approach[J]. Sens Actuators B, 2015,213(3):515-533.  

    57. [57]

      Wightman R M, May L J, Michael A C. Detection of Dopamine Dynamics in the Brain[J]. Anal Chem, 1988,60(13):769A-779A. doi: 10.1021/ac00164a718

    58. [58]

      Damier P, Hirsch E C, Agid Y. The Substantia Nigra of the Human Brain[J]. Brain, 1999,122(8):1421-1436. doi: 10.1093/brain/122.8.1421

    59. [59]

      Adams R N. Probing Brain Chemistry with Electroanalytical Techniques[J]. Anal Chem, 1976,48(14):1126A-1138A. doi: 10.1021/ac50008a001

    60. [60]

      Boulton A A, Baker G B, Adams R N. Voltammetric Methods in Brain Systems[M]. New Jersey:Humana Press, 1995:153-154.

    61. [61]

      Wang J. Electrochemical Glucose Biosensors[J]. Chem Rev, 2008,108(2):814-825. doi: 10.1021/cr068123a

    62. [62]

      Wang J. Glucose Biosensors:40 Years of Advances and Challenges[J]. Electroanalysis, 2010,13(12):983-988.

    63. [63]

      Zhang Y, Zhang L, Zhou C. Review of Chemical Vapor Deposition of Graphene and Related Applications[J]. Acc Chem Res, 2013,46:2329-2339. doi: 10.1021/ar300203n

    64. [64]

      Tang L, Li Y, Hui X. A Sensitive Acupuncture Needle Microsensor for Real-time Monitoring of Nitric Oxide in Acupoints of Rats[J]. Sci Rep, 2017,7(6446):1-10.  

    65. [65]

      Du X, Wu L, Cheng J. Graphene Microelectrode Arrays for Neural Activity Detection[J]. J Biol Phys, 2015,41(4):339-347. doi: 10.1007/s10867-015-9382-3

    66. [66]

      Zhao S, Liu X, Zheng X. Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes[J]. Nano Lett, 2016,16(12):7731-7738. doi: 10.1021/acs.nanolett.6b03829

    67. [67]

      Ping J, Blum J E, Vishnubhotla R. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids:From Phosphate Buffer Solution to Human Serum[J]. Small, 2017:1-22.  

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

Metrics
  • PDF Downloads(3)
  • Abstract views(459)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return