Graphene-based Catalysts for Efficient Electrocatalytic Applications
- Corresponding author: ZHANG Jintao, jtzhang@sdu.edu.cn
Citation:
CHEN Si, SUN Lizhen, SHU Xinxin, ZHANG Jintao. Graphene-based Catalysts for Efficient Electrocatalytic Applications[J]. Chinese Journal of Applied Chemistry,
;2018, 35(3): 272-285.
doi:
10.11944/j.issn.1000-0518.2018.03.170391
Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197
Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future[J]. Nature, 2012,488(7411):294-303. doi: 10.1038/nature11475
Seh Z W, Kibsgaard J, Dickens C F. Combining Theory and Experiment in Electrocatalysis:Insights into Materials Design[J]. Science, 2017,355(6321)aad4998. doi: 10.1126/science.aad4998
Katsounaros I, Cherevko S, Zeradjanin A R. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion[J]. Angew Chem Int Ed, 2014,53(1):102-121. doi: 10.1002/anie.v53.1
Zitolo A, Goellner V, Armel V. Identification of Catalytic Sites for Oxygen Reduction in Iron-and Nitrogen-Doped Graphene Materials[J]. Nat Mater, 2015,14(9):937-942. doi: 10.1038/nmat4367
Bu L Z, Zhang N, Guo S J. Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis[J]. Science, 2016,354(6318):1410-1414. doi: 10.1126/science.aah6133
Jiang K Z, Zhao D D, Guo S J. Efficient Oxygen Reduction Catalysis by Subnanometer Pt Alloy Nanowires[J]. Sci Adv, 2017,3(2)e1601705. doi: 10.1126/sciadv.1601705
Li M, Ma Q, Wei Z. Pt Monolayer Coating on Complex Network Substrate with High Catalytic Activity for the Hydrogen Evolution Reaction[J]. Sci Adv, 2015,1(8)e1400288.
Seitz L C, Dickens C F, Nishio K. A Highly Active and Stable IrOx/SrIrO3 Catalyst for the Oxygen Evolution Reaction[J]. Science, 2016,353(6303):1011-1014. doi: 10.1126/science.aaf5050
Zhang J, Wang G, Liao Z Q. Iridium Nanoparticles Anchored on 3D Graphite Foam as a Bifunctional Electrocatalyst for Excellent Overall Water Splitting in Acidic Solution[J]. Nano Energy, 2017,40(2017):27-33.
Li G Q, Li S T, Xiao M L. Nanoporous IrO2 Catalyst with Enhanced Activity and Durability for Water Oxidation Owing to Its Micro/Mesoporous Structure[J]. Nanoscale, 2017,9(27):9291-9298. doi: 10.1039/C7NR02899G
Chai G L, Qiu K P, Qiao M. Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P, N Co-Doped Graphene Frameworks[J]. Energy Environ Sci, 2017,10(5):1186-1195. doi: 10.1039/C6EE03446B
Yan Y, Xia B Y, Zhao B. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting[J]. J Mater Chem A, 2016,4(45):17587-17603. doi: 10.1039/C6TA08075H
Zhang J, Li H, Guo P. Rational Design of Graphitic Carbon Based Nanostructures for Advanced Electrocatalysis[J]. J Mater Chem A, 2016,4(22):8497-8511. doi: 10.1039/C6TA01657J
MIAO He, XUE Yejian, ZHOU Xufeng. Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries[J]. Prog Chem, 2015,27(7):935-944.
Sun Y F, Gao S, Lei F C. Atomically-Thin Two-Dimensional Sheets for Understanding Active Sites in Catalysis[J]. Chem Soc Rev, 2015,44(3):623-636. doi: 10.1039/C4CS00236A
Zhang J T, Dai L M. Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction[J]. ACS Catal, 2015,5(12):7244-7253. doi: 10.1021/acscatal.5b01563
NIE Xiaowei, CHEN Nan, LI Jing. Progress in Controllable Preparation and Applications of Graphene Fiber Supercapacitors[J]. Chinese J Appl Chem, 2016,33(11):1234-1244. doi: 10.11944/j.issn.1000-0518.2016.11.160330
Xu Y, Kraft M, Xu R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting[J]. Chem Soc Rev, 2016,45(11):3039-3052. doi: 10.1039/C5CS00729A
WU Weiming, ZHANG Changsong, YANG Shubin. Controllable Synthesis of Sandwich-Like Graphene-Supported Structures for Energy Storage and Conversion[J]. New Carbon Mater, 2017,32(1):1-14.
KULISONG Hayierbiek, ZENG Han. Direct Electrochemical Behavior and Sensing Performance of Nitrogen-Doped Meso-Porous Carbon and Chitosan Composite Immobilized with Laccase Modified Electrode[J]. Chinese J Appl Chem, 2013,30(10):1194-1201.
Fan M M, Feng Z Q, Zhu C L. Recent Progress in 2D or 3D N-Doped Graphene Synthesis and the Characterizations, Properties, and Modulations of N Species[J]. J Mater Sci, 2016,51(23):10323-10349. doi: 10.1007/s10853-016-0250-8
Yue X, Huang S L, Cai J J. Heteroatoms Dual Doped Porous Graphene Nanosheets as Efficient Bifunctional Metal-Free Electrocatalysts for Overall Water-Splitting[J]. J Mater Chem A, 2017,5(17):7784-7790. doi: 10.1039/C7TA01957B
Huang Z F, Wang J, Peng Y. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst:Recent Advances and Perspectives[J]. Adv Energy Mater, 20171700544.
Cueto M. del, Ocón P, Poyato J M L. Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications[J]. J Phys Chem C, 2015,119(4):2004-2009. doi: 10.1021/jp512588r
Katsounaros I, Schneider W B, Meier J C. Hydrogen Peroxide Electrochemistry on Platinum:Towards Understanding the Oxygen Reduction Reaction Mechanism[J]. Phys Chem Chem Phys, 2012,14(20):7384-7391. doi: 10.1039/c2cp40616k
Hsueh K L, Chin D T, Srinivasan S. Electrode Kinetics of Oxygen Reduction:A Theoretical and Experimental Analysis of the Rotating Ring-Disc Electrode Method[J]. J Electroanal Chem Interfacial Electrochem, 1983,153(1):79-95.
Zhuang Z B, Giles S A, Zheng J. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte[J]. Nat Commun, 2016,710141. doi: 10.1038/ncomms10141
Gong K P, Du F, Xia Z H. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049
Zhang J T, Xia Z H, Dai L M. Carbon-Based Electrocatalysts for Advanced Energy Conversion and Storage[J]. Sci Adv, 2015,1(7)e1500564. doi: 10.1126/sciadv.1500564
LING Chongyi, WANG Jinlan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys-Chim Sin, 2017,33(5):869-885. doi: 10.3866/PKU.WHXB201702088
Duan J, Chen S, Jaroniec M. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes[J]. ACS Catal, 2015,5(9):5207-5234. doi: 10.1021/acscatal.5b00991
Jiao Y, Zheng Y, Jaroniec M. Design of Electrocatalysts for Oxygen-and Hydrogen-Involving Energy Conversion Reactions[J]. Chem Soc Rev, 2015,44(8):2060-2086. doi: 10.1039/C4CS00470A
Guo D H, Shibuya R, Akiba C. Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts[J]. Science, 2016,351(6271):361-365. doi: 10.1126/science.aad0832
Gorlin Y, Jaramillo T F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation[J]. J Am Chem Soc, 2010,132(39):13612-13614. doi: 10.1021/ja104587v
Gong K P, Du F, Xia Z H. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049
Feng L Y, Yan Y Y, Chen Y G. Nitrogen-Doped Carbon Nanotubes as Efficient and Durable Metal-Free Cathodic Catalysts for Oxygen Reduction in Microbial Fuel Cells[J]. Energy Environ Sci, 2011,4(5):1892-1899. doi: 10.1039/c1ee01153g
Qu L T, Liu Y, Baek J B. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano, 2010,4(3):1321-1326. doi: 10.1021/nn901850u
Tao H C, Yan C, Robertson A W. N-Doping of Graphene Oxide at Low Temperature for the Oxygen Reduction Reaction[J]. Chem Commun(Camb), 2017,53(5):873-876. doi: 10.1039/C6CC08776K
Lv Q, Si W Y, Yang Z. Nitrogen-Doped Porous Graphdiyne:A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction[J]. ACS Appl Mater Interfaces, 2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115
Xie B B, Zhang Y, Zhang R J. Coassembly and High ORR Performance of Monodisperse Pt Nanocrystals with a Mesopore-Rich Nitrogen-Doped Graphene Aerogel[J]. J Mater Chem A, 2017,5(33):17544-17548. doi: 10.1039/C7TA04255H
Gao X C, Wang L W, Ma J Z. Facile Preparation of Nitrogen-Doped Graphene as an Efficient Oxygen Reduction Electrocatalyst[J]. Inorg Chem Front, 2017,4(9):1582-1590. doi: 10.1039/C7QI00387K
Yang L J, Jiang S J, Zhao Y. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed, 2011,50(31):7132-7135. doi: 10.1002/anie.v50.31
Wang S Y, Zhang L P, Xia Z H. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed Engl, 2012,51(17):4209-4212. doi: 10.1002/anie.201109257
Wang S Y, Iyyamperumal E, Roy A. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction:A Synergetic Effect by Co-Doping with Boron and Nitrogen[J]. Angew Chem Int Ed, 2011,50(49):11756-11760. doi: 10.1002/anie.201105204
Cruz-Silva E, López-Urías F, Muñoz-Sandoval E. Electronic Transport and Mechanical Properties of Phosphorus-and Phosphorus-Nitrogen-Doped Carbon Nanotubes[J]. ACS Nano, 2009,3(7):1913-1921. doi: 10.1021/nn900286h
Liu Z W, Peng F, Wang H J. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium[J]. Angew Chem Int Ed, 2011,50(14):3257-3261. doi: 10.1002/anie.201006768
Zhang C Z, Mahmood N, Yin H. Synthesis of Phosphorus-Doped Graphene and Its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries[J]. Adv Mater, 2013,25(35):4932-4937. doi: 10.1002/adma.201301870
Yang Z, Yao Z, Fang G Y. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction[J]. ACS Nano, 2012,6(1):205-211. doi: 10.1021/nn203393d
Poh H L, Simek P, Sofer Z. Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2, or CS2 Gas[J]. ACS Nano, 2013,7(6):5262-5272. doi: 10.1021/nn401296b
Choi C H, Chung M W, Kwon H C. B, N-and P, N-Doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media[J]. J Mater Chem A, 2013,1(11):3694-3699. doi: 10.1039/c3ta01648j
Choi C H, Chung M W, Park S H. Additional Doping of Phosphorus and/or Sulfur into Nitrogen-Doped Carbon for Efficient Oxygen Reduction Reaction in Acidic Media[J]. Phys Chem Chem Phys, 2013,15(6):1802-1805. doi: 10.1039/C2CP44147K
Zhang J T, Qu L T, Shi G Q. N, P-Codoped Carbon Networks as Efficient Metal-Free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Angew Chem Int Ed, 2016,55(6):2230-2234. doi: 10.1002/anie.201510495
Ding W, Wei Z D, Chen S G. Space-Confinement-Induced Synthesis of Pyridinic-and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction[J]. Angew Chem Int Ed, 2013,52(45):11755-11759. doi: 10.1002/anie.v52.45
Zhang J T, Dai L M. Nitrogen, Phosphorus, and Fluorine Tri-Doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting[J]. Angew Chem Int Ed, 2016,55(42):13296-13300. doi: 10.1002/anie.201607405
Li R, Wei Z D, Gou X L. Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. ACS Catal, 2015,5(7):4133-4142. doi: 10.1021/acscatal.5b00601
Qu K G, Zheng Y, Dai S. Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. Nano Energy, 2016,19(2016):373-381.
Tang Y, Allen B L, Kauffman D R. Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups[J]. J Am Chem Soc, 2009,131(37):13200-13201. doi: 10.1021/ja904595t
Meng Y Y, Voiry D, Goswami A. N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions[J]. J Am Chem Soc, 2014,136(39):13554-13557. doi: 10.1021/ja507463w
Silva R, Voiry D, Chhowalla M. Efficient Metal-Free Electrocatalysts for Oxygen Reduction:Polyaniline-Derived N-and O-Doped Mesoporous Carbons[J]. J Am Chem Soc, 2013,135(21):7823-7826. doi: 10.1021/ja402450a
Gavrilov N, Pašti I A, Mitric' M. Electrocatalysis of Oxygen Reduction Reaction on Polyaniline-Derived Nitrogen-Doped Carbon Nanoparticle Surfaces in Alkaline Media[J]. J Power Sources, 2012,220:306-316. doi: 10.1016/j.jpowsour.2012.07.119
Liu R, Mahurin S M, Li C. Dopamine as a Carbon Source:The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites[J]. Angew Chem Int Ed, 2011,50(30):6799-6802. doi: 10.1002/anie.201102070
Lee H, Dellatore S M, Miller W M. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007,318(5849):426-430. doi: 10.1126/science.1147241
Chen S, Duan J J, Jaroniec M. Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction[J]. Adv Mater, 2014,26(18):2925-2930. doi: 10.1002/adma.v26.18
Gao M R, Xu Y F, Jiang J. Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite[J]. J Am Chem Soc, 2012,134(6):2930-2933. doi: 10.1021/ja211526y
Zheng Y, Jiao Y, Chen J. Nanoporous Graphitic-C3N4@Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction[J]. J Am Chem Soc, 2011,133(50):20116-20119. doi: 10.1021/ja209206c
Yang S B, Zhi L J, Tang K. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions[J]. Adv Funct Mater, 2012,22(17):3634-3640. doi: 10.1002/adfm.v22.17
Chen S, Qiao S Z. Hierarchically Porous Nitrogen-Doped Graphene NiCo2O4 Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material[J]. ACS Nano, 2013,7(11):10190-10196. doi: 10.1021/nn404444r
Kim J H, Kannan A G, Woo H S. A Bi-Functional Metal-Free Catalyst Composed of Dual-Doped Graphene and Mesoporous Carbon for Rechargeable Lithium Oxygen Batteries[J]. J Mater Chem A, 2015,3(36):18456-18465. doi: 10.1039/C5TA05334J
Hu C G, Dai L M. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution[J]. Adv Mater, 2017,29(9)1604942. doi: 10.1002/adma.201604942
QIN Ruijie, ZHANG Zhangnan, WANG Yuxin. MoS2-Ni2P Nanoparticles Supported on Graphene as Electrocatalyst Towards Hydrogen Evolution Reaction[J]. Chem Ind Eng, 2017,34(2):21-26.
Chen X, Liu B, Zhong C. Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display[J]. Adv Energy Mater, 2017,7(18)1700779. doi: 10.1002/aenm.201700779
Hu C L, Zhang L, Zhao Z J. Edge Sites with Unsaturated Coordination on Core-Shell Mn3 O4@MnxCo3-XO4 Nanostructures for Electrocatalytic Water Oxidation[J]. Adv Mater, 2017,29(36)1701820. doi: 10.1002/adma.201701820
Fu J, Hassan F M, Zhong C. Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries[J]. Adv Mater, 2017,29(35)1702526. doi: 10.1002/adma.201702526
Hou Y, Qiu M, Zhang T. Ternary Porous Cobalt Phosphoselenide Nanosheets:An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting[J]. Adv Mater, 2017,29(35)1701589. doi: 10.1002/adma.201701589
Gadipelli S, Zhao T, Shevlin S A. Switching Effective Oxygen Reduction and Evolution Performance by Controlled Graphitization of a Cobalt Nitrogen Carbon Framework System[J]. Energy Environ Sci, 2016,9(5):1661-1667. doi: 10.1039/C6EE00551A
Zhang X, Liu S W, Zang Y P. Co/Co9S8@S, N-Doped Porous Graphene Sheets Derived from S, N Dual Organic Ligands Assembled Co-MOFs as Superior Electrocatalysts for Full Water Splitting in Alkaline Media[J]. Nano Energy, 2016,30(2016):93-102.
Fei H L, Dong J C, Arellano-Jimenez M J. Atomic Cobalt on Nitrogen-Doped Graphene for Hydrogen Generation[J]. Nat Commun, 2015,68668. doi: 10.1038/ncomms9668
Tang C, Wang B, Wang H F. Defect Engineering Toward Atomic Co-Nx-C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries[J]. Adv Mater, 2017,29(37).
Wang N, Li L G, Zhao D K. Graphene Composites with Cobalt Sulfide:Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte[J]. Small, 2017,13(33)1701025. doi: 10.1002/smll.v13.33
Dou S, Tao L, Huo J. Etched and Doped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis[J]. Energy Environ Sci, 2016,9(4):1320-1326. doi: 10.1039/C6EE00054A
Huang S C, Meng Y Y, He S M. N-, O-, and S-Tridoped Carbon-Encapsulated Co9S8 Nanomaterials:Efficient Bifunctional Electrocatalysts for Overall Water Splitting[J]. Adv Funct Mater, 2017,27(17)1606585. doi: 10.1002/adfm.v27.17
Tong Y, Chen P Z, Zhou T P. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution:Cobalt Oxide Nanoparticles Strongly Coupled to B, N-Decorated Graphene[J]. Angew Chem Int Ed, 2017,56(25):7121-7125. doi: 10.1002/anie.201702430
Bao J, Zhang X D, Fan B. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation[J]. Angew Chem Int Ed, 2015,54(25):7399-7404. doi: 10.1002/anie.v54.25
Zhao Y, Yang L J, Chen S. Can Boron and Nitrogen Co-Doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes[J]. J Am Chem Soc, 2013,135(4):1201-1204. doi: 10.1021/ja310566z
Hao Y C, Xu Y Q, Liu J F. Nickel Cobalt Oxides Supported on Co/N Decorated Graphene as an Excellent Bifunctional Oxygen Catalyst[J]. J Mater Chem A, 2017,5(11):5594-5600. doi: 10.1039/C7TA00299H
Geim A K, Grigorieva I V. Van Der Waals Heterostructures[J]. Nature, 2013,499(7459):419-425. doi: 10.1038/nature12385
Novoselov K S, Mishchenko A, Carvalho A. 2D Materials and Van Der Waals Heterostructures[J]. Science, 2016,353(6298)aac9439. doi: 10.1126/science.aac9439
Lin Y C, Ghosh R K, Addou R. Atomically Thin Resonant Tunnel Diodes Built from Synthetic Van Der Waals Heterostructures[J]. Nat Commun, 2015,67311. doi: 10.1038/ncomms8311
Deng J, Ren P J, Deng D H. Enhanced Electron Penetration Through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction[J]. Angew Chem Int Ed, 2015,54(7):2100-2104. doi: 10.1002/anie.201409524
Jia Y, Zhang L Z, Gao G P. A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting[J]. Adv Mater, 2017,29(17)1700017. doi: 10.1002/adma.v29.17
Varoon K, Zhang X, Elyassi B. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane[J]. Science, 2011,334(6052):72-75. doi: 10.1126/science.1208891
Song F, Hu X L. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis[J]. Nat Commun, 2014,54477.
Xu K, Chen P Z, Li X L. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. J Am Chem Soc, 2015,137(12):4119-4125. doi: 10.1021/ja5119495
Stern L A, Feng L G, Song F. Ni2P as a Janus Catalyst for Water Splitting:The Oxygen Evolution Activity of Ni2P Nanoparticles[J]. Energy Environ Sci, 2015,8(8):2347-2351. doi: 10.1039/C5EE01155H
Fan Y C, Ida S, Staykov A. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery[J]. Small, 2017,13(25)1700099. doi: 10.1002/smll.v13.25
Jayaramulu K, Masa J, Tomanec O. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution[J]. Adv Funct Mater, 2017,27(33)1700451. doi: 10.1002/adfm.v27.33
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201