Citation: CHEN Si, SUN Lizhen, SHU Xinxin, ZHANG Jintao. Graphene-based Catalysts for Efficient Electrocatalytic Applications[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 272-285. doi: 10.11944/j.issn.1000-0518.2018.03.170391 shu

Graphene-based Catalysts for Efficient Electrocatalytic Applications

  • Corresponding author: ZHANG Jintao, jtzhang@sdu.edu.cn
  • Received Date: 31 October 2017
    Revised Date: 30 November 2017
    Accepted Date: 14 December 2017

    Fund Project: the National Natural Science Foundation of China 21503116the Qingdao Basic & Applied Research Project 15-9-1-56-jchthe Taishan Scholars Program of Shandong Province tsqn20161004Supported by the National Natural Science Foundation of China(No.21503116), the Taishan Scholars Program of Shandong Province(No.tsqn20161004), the Qingdao Basic & Applied Research Project(No.15-9-1-56-jch)

Figures(6)

  • To solve the issues of energy shortage and environmental pollution, researchers are working to develop clean and sustainable energy sources. Among them, chemical reactions(e.g., oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction) are of importance for the development of electrochemical energy conversion and storage. In order to improve its energy conversion efficiency, electrocatalysts(e.g., Pt/C) are commonly used to reduce the activation energy of these sluggish reactions and improve the energy conversion efficiency. In recent years, graphene, as a two-dimensional carbon material with a high specific surface area and excellent electronic conductivity, has attracted a wide range of research interests. The graphene-based catalytic materials with low price and high stability comparable to those of noble metal catalysts have been designed by means of heteroatom doping, surface defect modulation and introduction of catalytic active components(e.g., non-noble metal oxides). This review summarizes the latest research progress of graphene-based electrocatalysts with multifunctional applications by rationally controlling on the surface/interface structures and properties, with a special focus on their promising applications in fuel cells, metal-air batteries and electrochemical water splitting. Furthermore, challenges and future development of graphene-based electrocatalysts are also discussed.
  • 加载中
    1. [1]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    2. [2]

      Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future[J]. Nature, 2012,488(7411):294-303. doi: 10.1038/nature11475

    3. [3]

      Seh Z W, Kibsgaard J, Dickens C F. Combining Theory and Experiment in Electrocatalysis:Insights into Materials Design[J]. Science, 2017,355(6321)aad4998. doi: 10.1126/science.aad4998

    4. [4]

      Katsounaros I, Cherevko S, Zeradjanin A R. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion[J]. Angew Chem Int Ed, 2014,53(1):102-121. doi: 10.1002/anie.v53.1

    5. [5]

      Zitolo A, Goellner V, Armel V. Identification of Catalytic Sites for Oxygen Reduction in Iron-and Nitrogen-Doped Graphene Materials[J]. Nat Mater, 2015,14(9):937-942. doi: 10.1038/nmat4367

    6. [6]

      Bu L Z, Zhang N, Guo S J. Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis[J]. Science, 2016,354(6318):1410-1414. doi: 10.1126/science.aah6133

    7. [7]

      Jiang K Z, Zhao D D, Guo S J. Efficient Oxygen Reduction Catalysis by Subnanometer Pt Alloy Nanowires[J]. Sci Adv, 2017,3(2)e1601705. doi: 10.1126/sciadv.1601705

    8. [8]

      Li M, Ma Q, Wei Z. Pt Monolayer Coating on Complex Network Substrate with High Catalytic Activity for the Hydrogen Evolution Reaction[J]. Sci Adv, 2015,1(8)e1400288.  

    9. [9]

      Seitz L C, Dickens C F, Nishio K. A Highly Active and Stable IrOx/SrIrO3 Catalyst for the Oxygen Evolution Reaction[J]. Science, 2016,353(6303):1011-1014. doi: 10.1126/science.aaf5050

    10. [10]

      Zhang J, Wang G, Liao Z Q. Iridium Nanoparticles Anchored on 3D Graphite Foam as a Bifunctional Electrocatalyst for Excellent Overall Water Splitting in Acidic Solution[J]. Nano Energy, 2017,40(2017):27-33.  

    11. [11]

      Li G Q, Li S T, Xiao M L. Nanoporous IrO2 Catalyst with Enhanced Activity and Durability for Water Oxidation Owing to Its Micro/Mesoporous Structure[J]. Nanoscale, 2017,9(27):9291-9298. doi: 10.1039/C7NR02899G

    12. [12]

      Chai G L, Qiu K P, Qiao M. Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P, N Co-Doped Graphene Frameworks[J]. Energy Environ Sci, 2017,10(5):1186-1195. doi: 10.1039/C6EE03446B

    13. [13]

      Yan Y, Xia B Y, Zhao B. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting[J]. J Mater Chem A, 2016,4(45):17587-17603. doi: 10.1039/C6TA08075H

    14. [14]

      Zhang J, Li H, Guo P. Rational Design of Graphitic Carbon Based Nanostructures for Advanced Electrocatalysis[J]. J Mater Chem A, 2016,4(22):8497-8511. doi: 10.1039/C6TA01657J

    15. [15]

      MIAO He, XUE Yejian, ZHOU Xufeng. Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries[J]. Prog Chem, 2015,27(7):935-944.  

    16. [16]

      Sun Y F, Gao S, Lei F C. Atomically-Thin Two-Dimensional Sheets for Understanding Active Sites in Catalysis[J]. Chem Soc Rev, 2015,44(3):623-636. doi: 10.1039/C4CS00236A

    17. [17]

      Zhang J T, Dai L M. Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction[J]. ACS Catal, 2015,5(12):7244-7253. doi: 10.1021/acscatal.5b01563

    18. [18]

      NIE Xiaowei, CHEN Nan, LI Jing. Progress in Controllable Preparation and Applications of Graphene Fiber Supercapacitors[J]. Chinese J Appl Chem, 2016,33(11):1234-1244. doi: 10.11944/j.issn.1000-0518.2016.11.160330 

    19. [19]

      Xu Y, Kraft M, Xu R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting[J]. Chem Soc Rev, 2016,45(11):3039-3052. doi: 10.1039/C5CS00729A

    20. [20]

      WU Weiming, ZHANG Changsong, YANG Shubin. Controllable Synthesis of Sandwich-Like Graphene-Supported Structures for Energy Storage and Conversion[J]. New Carbon Mater, 2017,32(1):1-14.  

    21. [21]

      KULISONG Hayierbiek, ZENG Han. Direct Electrochemical Behavior and Sensing Performance of Nitrogen-Doped Meso-Porous Carbon and Chitosan Composite Immobilized with Laccase Modified Electrode[J]. Chinese J Appl Chem, 2013,30(10):1194-1201.  

    22. [22]

      Fan M M, Feng Z Q, Zhu C L. Recent Progress in 2D or 3D N-Doped Graphene Synthesis and the Characterizations, Properties, and Modulations of N Species[J]. J Mater Sci, 2016,51(23):10323-10349. doi: 10.1007/s10853-016-0250-8

    23. [23]

      Yue X, Huang S L, Cai J J. Heteroatoms Dual Doped Porous Graphene Nanosheets as Efficient Bifunctional Metal-Free Electrocatalysts for Overall Water-Splitting[J]. J Mater Chem A, 2017,5(17):7784-7790. doi: 10.1039/C7TA01957B

    24. [24]

      Huang Z F, Wang J, Peng Y. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst:Recent Advances and Perspectives[J]. Adv Energy Mater, 20171700544.  

    25. [25]

      Cueto M. del, Ocón P, Poyato J M L. Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications[J]. J Phys Chem C, 2015,119(4):2004-2009. doi: 10.1021/jp512588r

    26. [26]

      Katsounaros I, Schneider W B, Meier J C. Hydrogen Peroxide Electrochemistry on Platinum:Towards Understanding the Oxygen Reduction Reaction Mechanism[J]. Phys Chem Chem Phys, 2012,14(20):7384-7391. doi: 10.1039/c2cp40616k

    27. [27]

      Hsueh K L, Chin D T, Srinivasan S. Electrode Kinetics of Oxygen Reduction:A Theoretical and Experimental Analysis of the Rotating Ring-Disc Electrode Method[J]. J Electroanal Chem Interfacial Electrochem, 1983,153(1):79-95.  

    28. [28]

      Zhuang Z B, Giles S A, Zheng J. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte[J]. Nat Commun, 2016,710141. doi: 10.1038/ncomms10141

    29. [29]

      Gong K P, Du F, Xia Z H. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    30. [30]

      Zhang J T, Xia Z H, Dai L M. Carbon-Based Electrocatalysts for Advanced Energy Conversion and Storage[J]. Sci Adv, 2015,1(7)e1500564. doi: 10.1126/sciadv.1500564

    31. [31]

      LING Chongyi, WANG Jinlan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys-Chim Sin, 2017,33(5):869-885. doi: 10.3866/PKU.WHXB201702088

    32. [32]

      Duan J, Chen S, Jaroniec M. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes[J]. ACS Catal, 2015,5(9):5207-5234. doi: 10.1021/acscatal.5b00991

    33. [33]

      Jiao Y, Zheng Y, Jaroniec M. Design of Electrocatalysts for Oxygen-and Hydrogen-Involving Energy Conversion Reactions[J]. Chem Soc Rev, 2015,44(8):2060-2086. doi: 10.1039/C4CS00470A

    34. [34]

      Guo D H, Shibuya R, Akiba C. Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts[J]. Science, 2016,351(6271):361-365. doi: 10.1126/science.aad0832

    35. [35]

      Gorlin Y, Jaramillo T F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation[J]. J Am Chem Soc, 2010,132(39):13612-13614. doi: 10.1021/ja104587v

    36. [36]

      Gong K P, Du F, Xia Z H. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    37. [37]

      Feng L Y, Yan Y Y, Chen Y G. Nitrogen-Doped Carbon Nanotubes as Efficient and Durable Metal-Free Cathodic Catalysts for Oxygen Reduction in Microbial Fuel Cells[J]. Energy Environ Sci, 2011,4(5):1892-1899. doi: 10.1039/c1ee01153g

    38. [38]

      Qu L T, Liu Y, Baek J B. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano, 2010,4(3):1321-1326. doi: 10.1021/nn901850u

    39. [39]

      Tao H C, Yan C, Robertson A W. N-Doping of Graphene Oxide at Low Temperature for the Oxygen Reduction Reaction[J]. Chem Commun(Camb), 2017,53(5):873-876. doi: 10.1039/C6CC08776K

    40. [40]

      Lv Q, Si W Y, Yang Z. Nitrogen-Doped Porous Graphdiyne:A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction[J]. ACS Appl Mater Interfaces, 2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115

    41. [41]

      Xie B B, Zhang Y, Zhang R J. Coassembly and High ORR Performance of Monodisperse Pt Nanocrystals with a Mesopore-Rich Nitrogen-Doped Graphene Aerogel[J]. J Mater Chem A, 2017,5(33):17544-17548. doi: 10.1039/C7TA04255H

    42. [42]

      Gao X C, Wang L W, Ma J Z. Facile Preparation of Nitrogen-Doped Graphene as an Efficient Oxygen Reduction Electrocatalyst[J]. Inorg Chem Front, 2017,4(9):1582-1590. doi: 10.1039/C7QI00387K

    43. [43]

      Yang L J, Jiang S J, Zhao Y. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed, 2011,50(31):7132-7135. doi: 10.1002/anie.v50.31

    44. [44]

      Wang S Y, Zhang L P, Xia Z H. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed Engl, 2012,51(17):4209-4212. doi: 10.1002/anie.201109257

    45. [45]

      Wang S Y, Iyyamperumal E, Roy A. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction:A Synergetic Effect by Co-Doping with Boron and Nitrogen[J]. Angew Chem Int Ed, 2011,50(49):11756-11760. doi: 10.1002/anie.201105204

    46. [46]

      Cruz-Silva E, López-Urías F, Muñoz-Sandoval E. Electronic Transport and Mechanical Properties of Phosphorus-and Phosphorus-Nitrogen-Doped Carbon Nanotubes[J]. ACS Nano, 2009,3(7):1913-1921. doi: 10.1021/nn900286h

    47. [47]

      Liu Z W, Peng F, Wang H J. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium[J]. Angew Chem Int Ed, 2011,50(14):3257-3261. doi: 10.1002/anie.201006768

    48. [48]

      Zhang C Z, Mahmood N, Yin H. Synthesis of Phosphorus-Doped Graphene and Its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries[J]. Adv Mater, 2013,25(35):4932-4937. doi: 10.1002/adma.201301870

    49. [49]

      Yang Z, Yao Z, Fang G Y. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction[J]. ACS Nano, 2012,6(1):205-211. doi: 10.1021/nn203393d

    50. [50]

      Poh H L, Simek P, Sofer Z. Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2, or CS2 Gas[J]. ACS Nano, 2013,7(6):5262-5272. doi: 10.1021/nn401296b

    51. [51]

      Choi C H, Chung M W, Kwon H C. B, N-and P, N-Doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media[J]. J Mater Chem A, 2013,1(11):3694-3699. doi: 10.1039/c3ta01648j

    52. [52]

      Choi C H, Chung M W, Park S H. Additional Doping of Phosphorus and/or Sulfur into Nitrogen-Doped Carbon for Efficient Oxygen Reduction Reaction in Acidic Media[J]. Phys Chem Chem Phys, 2013,15(6):1802-1805. doi: 10.1039/C2CP44147K

    53. [53]

      Zhang J T, Qu L T, Shi G Q. N, P-Codoped Carbon Networks as Efficient Metal-Free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Angew Chem Int Ed, 2016,55(6):2230-2234. doi: 10.1002/anie.201510495

    54. [54]

      Ding W, Wei Z D, Chen S G. Space-Confinement-Induced Synthesis of Pyridinic-and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction[J]. Angew Chem Int Ed, 2013,52(45):11755-11759. doi: 10.1002/anie.v52.45

    55. [55]

      Zhang J T, Dai L M. Nitrogen, Phosphorus, and Fluorine Tri-Doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting[J]. Angew Chem Int Ed, 2016,55(42):13296-13300. doi: 10.1002/anie.201607405

    56. [56]

      Li R, Wei Z D, Gou X L. Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. ACS Catal, 2015,5(7):4133-4142. doi: 10.1021/acscatal.5b00601

    57. [57]

      Qu K G, Zheng Y, Dai S. Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. Nano Energy, 2016,19(2016):373-381.  

    58. [58]

      Tang Y, Allen B L, Kauffman D R. Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups[J]. J Am Chem Soc, 2009,131(37):13200-13201. doi: 10.1021/ja904595t

    59. [59]

      Meng Y Y, Voiry D, Goswami A. N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions[J]. J Am Chem Soc, 2014,136(39):13554-13557. doi: 10.1021/ja507463w

    60. [60]

      Silva R, Voiry D, Chhowalla M. Efficient Metal-Free Electrocatalysts for Oxygen Reduction:Polyaniline-Derived N-and O-Doped Mesoporous Carbons[J]. J Am Chem Soc, 2013,135(21):7823-7826. doi: 10.1021/ja402450a

    61. [61]

      Gavrilov N, Pašti I A, Mitric' M. Electrocatalysis of Oxygen Reduction Reaction on Polyaniline-Derived Nitrogen-Doped Carbon Nanoparticle Surfaces in Alkaline Media[J]. J Power Sources, 2012,220:306-316. doi: 10.1016/j.jpowsour.2012.07.119

    62. [62]

      Liu R, Mahurin S M, Li C. Dopamine as a Carbon Source:The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites[J]. Angew Chem Int Ed, 2011,50(30):6799-6802. doi: 10.1002/anie.201102070

    63. [63]

      Lee H, Dellatore S M, Miller W M. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007,318(5849):426-430. doi: 10.1126/science.1147241

    64. [64]

      Chen S, Duan J J, Jaroniec M. Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction[J]. Adv Mater, 2014,26(18):2925-2930. doi: 10.1002/adma.v26.18

    65. [65]

      Gao M R, Xu Y F, Jiang J. Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite[J]. J Am Chem Soc, 2012,134(6):2930-2933. doi: 10.1021/ja211526y

    66. [66]

      Zheng Y, Jiao Y, Chen J. Nanoporous Graphitic-C3N4@Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction[J]. J Am Chem Soc, 2011,133(50):20116-20119. doi: 10.1021/ja209206c

    67. [67]

      Yang S B, Zhi L J, Tang K. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions[J]. Adv Funct Mater, 2012,22(17):3634-3640. doi: 10.1002/adfm.v22.17

    68. [68]

      Chen S, Qiao S Z. Hierarchically Porous Nitrogen-Doped Graphene NiCo2O4 Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material[J]. ACS Nano, 2013,7(11):10190-10196. doi: 10.1021/nn404444r

    69. [69]

      Kim J H, Kannan A G, Woo H S. A Bi-Functional Metal-Free Catalyst Composed of Dual-Doped Graphene and Mesoporous Carbon for Rechargeable Lithium Oxygen Batteries[J]. J Mater Chem A, 2015,3(36):18456-18465. doi: 10.1039/C5TA05334J

    70. [70]

      Hu C G, Dai L M. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution[J]. Adv Mater, 2017,29(9)1604942. doi: 10.1002/adma.201604942

    71. [71]

      QIN Ruijie, ZHANG Zhangnan, WANG Yuxin. MoS2-Ni2P Nanoparticles Supported on Graphene as Electrocatalyst Towards Hydrogen Evolution Reaction[J]. Chem Ind Eng, 2017,34(2):21-26.  

    72. [72]

      Chen X, Liu B, Zhong C. Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display[J]. Adv Energy Mater, 2017,7(18)1700779. doi: 10.1002/aenm.201700779

    73. [73]

      Hu C L, Zhang L, Zhao Z J. Edge Sites with Unsaturated Coordination on Core-Shell Mn3 O4@MnxCo3-XO4 Nanostructures for Electrocatalytic Water Oxidation[J]. Adv Mater, 2017,29(36)1701820. doi: 10.1002/adma.201701820

    74. [74]

      Fu J, Hassan F M, Zhong C. Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries[J]. Adv Mater, 2017,29(35)1702526. doi: 10.1002/adma.201702526

    75. [75]

      Hou Y, Qiu M, Zhang T. Ternary Porous Cobalt Phosphoselenide Nanosheets:An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting[J]. Adv Mater, 2017,29(35)1701589. doi: 10.1002/adma.201701589

    76. [76]

      Gadipelli S, Zhao T, Shevlin S A. Switching Effective Oxygen Reduction and Evolution Performance by Controlled Graphitization of a Cobalt Nitrogen Carbon Framework System[J]. Energy Environ Sci, 2016,9(5):1661-1667. doi: 10.1039/C6EE00551A

    77. [77]

      Zhang X, Liu S W, Zang Y P. Co/Co9S8@S, N-Doped Porous Graphene Sheets Derived from S, N Dual Organic Ligands Assembled Co-MOFs as Superior Electrocatalysts for Full Water Splitting in Alkaline Media[J]. Nano Energy, 2016,30(2016):93-102.

    78. [78]

      Fei H L, Dong J C, Arellano-Jimenez M J. Atomic Cobalt on Nitrogen-Doped Graphene for Hydrogen Generation[J]. Nat Commun, 2015,68668. doi: 10.1038/ncomms9668

    79. [79]

      Tang C, Wang B, Wang H F. Defect Engineering Toward Atomic Co-Nx-C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries[J]. Adv Mater, 2017,29(37).  

    80. [80]

      Wang N, Li L G, Zhao D K. Graphene Composites with Cobalt Sulfide:Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte[J]. Small, 2017,13(33)1701025. doi: 10.1002/smll.v13.33

    81. [81]

      Dou S, Tao L, Huo J. Etched and Doped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis[J]. Energy Environ Sci, 2016,9(4):1320-1326. doi: 10.1039/C6EE00054A

    82. [82]

      Huang S C, Meng Y Y, He S M. N-, O-, and S-Tridoped Carbon-Encapsulated Co9S8 Nanomaterials:Efficient Bifunctional Electrocatalysts for Overall Water Splitting[J]. Adv Funct Mater, 2017,27(17)1606585. doi: 10.1002/adfm.v27.17

    83. [83]

      Tong Y, Chen P Z, Zhou T P. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution:Cobalt Oxide Nanoparticles Strongly Coupled to B, N-Decorated Graphene[J]. Angew Chem Int Ed, 2017,56(25):7121-7125. doi: 10.1002/anie.201702430

    84. [84]

      Bao J, Zhang X D, Fan B. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation[J]. Angew Chem Int Ed, 2015,54(25):7399-7404. doi: 10.1002/anie.v54.25

    85. [85]

      Zhao Y, Yang L J, Chen S. Can Boron and Nitrogen Co-Doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes[J]. J Am Chem Soc, 2013,135(4):1201-1204. doi: 10.1021/ja310566z

    86. [86]

      Hao Y C, Xu Y Q, Liu J F. Nickel Cobalt Oxides Supported on Co/N Decorated Graphene as an Excellent Bifunctional Oxygen Catalyst[J]. J Mater Chem A, 2017,5(11):5594-5600. doi: 10.1039/C7TA00299H

    87. [87]

      Geim A K, Grigorieva I V. Van Der Waals Heterostructures[J]. Nature, 2013,499(7459):419-425. doi: 10.1038/nature12385

    88. [88]

      Novoselov K S, Mishchenko A, Carvalho A. 2D Materials and Van Der Waals Heterostructures[J]. Science, 2016,353(6298)aac9439. doi: 10.1126/science.aac9439

    89. [89]

      Lin Y C, Ghosh R K, Addou R. Atomically Thin Resonant Tunnel Diodes Built from Synthetic Van Der Waals Heterostructures[J]. Nat Commun, 2015,67311. doi: 10.1038/ncomms8311

    90. [90]

      Deng J, Ren P J, Deng D H. Enhanced Electron Penetration Through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction[J]. Angew Chem Int Ed, 2015,54(7):2100-2104. doi: 10.1002/anie.201409524

    91. [91]

      Jia Y, Zhang L Z, Gao G P. A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting[J]. Adv Mater, 2017,29(17)1700017. doi: 10.1002/adma.v29.17

    92. [92]

      Varoon K, Zhang X, Elyassi B. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane[J]. Science, 2011,334(6052):72-75. doi: 10.1126/science.1208891

    93. [93]

      Song F, Hu X L. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis[J]. Nat Commun, 2014,54477.

    94. [94]

      Xu K, Chen P Z, Li X L. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. J Am Chem Soc, 2015,137(12):4119-4125. doi: 10.1021/ja5119495

    95. [95]

      Stern L A, Feng L G, Song F. Ni2P as a Janus Catalyst for Water Splitting:The Oxygen Evolution Activity of Ni2P Nanoparticles[J]. Energy Environ Sci, 2015,8(8):2347-2351. doi: 10.1039/C5EE01155H

    96. [96]

      Fan Y C, Ida S, Staykov A. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery[J]. Small, 2017,13(25)1700099. doi: 10.1002/smll.v13.25

    97. [97]

      Jayaramulu K, Masa J, Tomanec O. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution[J]. Adv Funct Mater, 2017,27(33)1700451. doi: 10.1002/adfm.v27.33

  • 加载中
    1. [1]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(7)
  • Abstract views(536)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return