Recent Progress on Graphene-Based Flexible All-Solid-State Supercapacitors
- Corresponding author: CHEN Tao, tchen@tongji.edu.cn
Citation:
LI Ning, CHEN Tao. Recent Progress on Graphene-Based Flexible All-Solid-State Supercapacitors[J]. Chinese Journal of Applied Chemistry,
;2018, 35(3): 259-271.
doi:
10.11944/j.issn.1000-0518.2018.03.170381
Rogers J A, Someya T, Huang Y G. Materials and Mechanics for Stretchable Electronics[J]. Science, 2010,327(5973):1603-1607. doi: 10.1126/science.1182383
Ramuz M, Tee B C K, Tok J B H. Transparent, Optical, Pressure-sensitive Artificial Skin for Large-area Stretchable Electronics[J]. Adv Mater, 2012,24(24):3223-3227. doi: 10.1002/adma.v24.24
Majumder S, Mondal T, Deen M J. Wearable Sensors for Remote Health Monitoring[J]. Sensors, 2017,17(1)130.
Larson C, Peele B, Li S. Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing[J]. Science, 2016,351(6277):1071-1074. doi: 10.1126/science.aac5082
Weng W, Chen P N, He S S. Smart Electronic Textiles[J]. Angew Chem Int Ed, 2016,55(21):6140-6169. doi: 10.1002/anie.201507333
Gao Y, Ota H, Schaler E W. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring[J]. Adv Mater, 2017,29(39)1701985. doi: 10.1002/adma.201701985
Xie K Y, Wei B Q. Materials and Structures for Stretchable Energy Storage and Conversion Devices[J]. Adv Mater, 2014,26(22):3592-3617. doi: 10.1002/adma.v26.22
Hu Y H, Sun X L. Flexible Rechargeable Lithium Ion Batteries:Advances and Challenges in Materials and Process Technologies[J]. J Mater Chem A, 2014,2(28):10712-10738. doi: 10.1039/C4TA00716F
Chen T, Peng H S, Durstock M. High-performance Transparent and Stretchable All-solid Supercapacitors Based on Highly Aligned Carbon Nanotube Sheets[J]. Sci Rep, 2014,43612.
Lv T, Yao Y, Li N. Wearable Fiber-shaped Energy Conversion and Storage Devices Based on Aligned Carbon Nanotubes[J]. Nano Today, 2016,11(5):644-660. doi: 10.1016/j.nantod.2016.08.010
Chen T, Dai L M. Flexible Supercapacitors Based on Carbon Nanomaterials[J]. J Mater Chem A, 2014,2(28):10756-10775. doi: 10.1039/c4ta00567h
Lv T, Yao Y, Li N. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites[J]. Angew Chem Int Ed, 2016,55(32):9191-9195. doi: 10.1002/anie.201603356
Chen T, Hao R, Peng H S. High-Performance, Stretchable, Wire-shaped Supercapacitors[J]. Angew Chem Int Ed, 2015,54(2):618-622.
Wen L, Li F, Cheng H M. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage:From Materials to Devices[J]. Adv Mater, 2016,28(22):4306-4337. doi: 10.1002/adma.v28.22
Ren W C, Cheng H M. The Global Growth of Graphene[J]. Nat Nanotechnol, 2014,9(10):726-730. doi: 10.1038/nnano.2014.229
Bonaccorso F, Colombo L, Yu G H. Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015,347(6217)1246501. doi: 10.1126/science.1246501
Li N, Lv T, Yao Y. Compact Graphene/MoS2 Composite Films for Highly Flexible and Stretchable All-solid-state Supercapacitors[J]. J Mater Chem A, 2017,5(7):3267-3273. doi: 10.1039/C6TA10165H
Xiao F, Yang S X, Zhang Z Y. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-solid-state Supercapacitor[J]. Sci Rep, 2015,59359. doi: 10.1038/srep09359
Dong Y F, Wu Z S, Ren W C. Graphene:A Promising 2D Material for Electrochemical Energy Storage[J]. Sci Bull, 2017,62(10):724-740. doi: 10.1016/j.scib.2017.04.010
Novoselov K S, Fal'ko V I, Colombo L. A Roadmap for Graphene[J]. Nature, 2012,490(7419):192-200. doi: 10.1038/nature11458
Xu Z, Peng L, Liu Y J. Experimental Guidance to Graphene Macroscopic Wet-spun Fibers, Continuous Papers, and Ultralightweight Aerogels[J]. Chem Mater, 2017,29(1):319-330. doi: 10.1021/acs.chemmater.6b02882
Xu Z, Gao C. Graphene Fiber:A New Trend in Carbon Fibers[J]. Mater Today, 2015,18(9):480-492. doi: 10.1016/j.mattod.2015.06.009
Yang Z B, Sun H, Chen T. Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45% Energy Conversion Efficiency[J]. Angew Chem Int Ed, 2013,52(29):7545-7548. doi: 10.1002/anie.201301776
Meng F C, Lu W B, Li Q W. Graphene-based Fibers:A Review[J]. Adv Mater, 2015,27(35):5113-5131. doi: 10.1002/adma.201501126
Xu Z, Liu Y J, Zhao X L. Ultrastiff and Strong Graphene Fibers via Full-scale Synergetic Defect Engineering[J]. Adv Mater, 2016,28(30):6449-6456. doi: 10.1002/adma.201506426
Xu Z, Gao C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J]. Nat Commun, 2011,2571. doi: 10.1038/ncomms1583
Liu Y J, Xu Z, Zhan J M. Superb Electrically Conductive Graphene Fibers via Doping Strategy[J]. Adv Mater, 2016,28(36):7941-7947. doi: 10.1002/adma.201602444
Xin G Q, Yao T K, Sun H T. Highly Thermally Conductive and Mechanically Strong Graphene Fibers[J]. Science, 2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
Li X M, Zhao T S, Wang K L. Directly Drawing Self-assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties[J]. Langmuir, 2011,27(19):12164-12171. doi: 10.1021/la202380g
Chen T, Dai L M. Macroscopic Graphene Fibers Directly Assembled from CVD-grown Fiber-shaped Hollow Graphene Tubes[J]. Angew Chem Int Ed, 2015,54(49):14947-14950. doi: 10.1002/anie.201507246
Eda G, Fanchini G, Chhowalla M. Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat Nanotechnol, 2008,3(5):270-274. doi: 10.1038/nnano.2008.83
Eigler S, Enzelberger-Heim M, Grimm S. Wet Chemical Synthesis of Graphene[J]. Adv Mater, 2013,25(26):3583-3587. doi: 10.1002/adma.201300155
Liu L H, Lyu J, Zhao T K. Large Area Preparation of Multilayered Graphene Films by Chemical Vapour Deposition with High Electrocatalytic Activity Toward Hydrogen Peroxide[J]. Mater Technol, 2015,30(A3):A121-A126.
Kumar P, Shahzad F, Yu S. Large-area Reduced Graphene Oxide Thin Film with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness[J]. Carbon, 2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032
Xiong Z Y, Liao C L, Han W H. Mechanically Tough Large-area Hierarchical Porous Graphene Films for High-performance Flexible Supercapacitor Applications[J]. Adv Mater, 2015,27(30):4469-4475. doi: 10.1002/adma.v27.30
Zhang M, Huang L, Chen J. Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes[J]. Adv Mater, 2014,26(45):7588-7592. doi: 10.1002/adma.v26.45
Peng L, Xu Z, Liu Z. Ultrahigh Thermal Conductive yet Superflexible Graphene Films[J]. Adv Mater, 2017,29(27)1700589. doi: 10.1002/adma.v29.27
Kim K S, Zhao Y, Jang H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J]. Nature, 2009,457(7230):706-710. doi: 10.1038/nature07719
Li X S, Cai W W, An J H. Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245
Wang M, Jang S K, Jang W J. A Platform for Large-scale Graphene Electronics-CVD Growth of Single-layer Graphene on CVD-grown Hexagonal Boron Nitride[J]. Adv Mater, 2013,25(19):2746-2752. doi: 10.1002/adma.v25.19
Tan R K L, Reeves S P, Hashemi N. Graphene as a Flexible Electrode:Review of Fabrication Approaches[J]. J Mater Chem A, 2017,5(34):17777-17803. doi: 10.1039/C7TA05759H
Jiang W, Xin H, Li W. Microcellular 3D Graphene Foam via Chemical Vapor Deposition of Electroless Plated Nickel Foam Templates[J]. Mater Lett, 2016,162:105-109. doi: 10.1016/j.matlet.2015.09.118
Deng W, Fang Q L, Zhou X F. Hydrothermal Self-assembly of Graphene Foams with Controllable Pore Size[J]. RSC Adv, 2016,6(25):20843-20849. doi: 10.1039/C5RA26088D
Liu T, Huang M L, Li X F. Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids[J]. Carbon, 2016,100:456-464. doi: 10.1016/j.carbon.2016.01.038
Zhang Q Q, Zhang F, Medarametla S P. 3D Printing of Graphene Aerogels[J]. Small, 2016,12(13):1702-1708. doi: 10.1002/smll.v12.13
Lv J L, Meng Y, Suzuki K. Fabrication of 3D Graphene Foam for a Highly Conducting Electrode[J]. Mater Lett, 2017,196:369-372. doi: 10.1016/j.matlet.2017.03.079
Chen Z P, Ren W C, Gao L B. Three-dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nat Mater, 2011,10(6):424-428. doi: 10.1038/nmat3001
Du X S, Liu H Y, Mai Y W. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame[J]. ACS Nano, 2016,10(1):453-462. doi: 10.1021/acsnano.5b05373
Lv L X, Zhang P P, Cheng H H. Solution-processed Ultraelastic and Strong Air-bubbled Graphene Foams[J]. Small, 2016,12(24):3229-3234. doi: 10.1002/smll.v12.24
Zhu Y W, Murali S, Stoller M D. Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011,332(6037):1537-1541. doi: 10.1126/science.1200770
Zhu J Y, Childress A S, Karakaya M. Defect-engineered Graphene for High-energy-and High-power-density Supercapacitor Devices[J]. Adv Mater, 2016,28(33):7185-7192. doi: 10.1002/adma.201602028
Wu Z S, Winter A, Chen L. Three-dimensional Nitrogen and Boron Co-doped Graphene for High-performance All-solid-state Supercapacitors[J]. Adv Mater, 2012,24(37):5130-5135. doi: 10.1002/adma.201201948
Choi B G, Chang S J, Kang H W. High Performance of a Solid-state Flexible Asymmetric Supercapacitor Based on Graphene Films[J]. Nanoscale, 2012,4(16):4983-4988. doi: 10.1039/c2nr30991b
El-Kady M F, Strong V, Dubin S. Laser Scribing of High-performance and Flexible Graphene-based Electrochemical Capacitors[J]. Science, 2012,335(6074):1326-1330. doi: 10.1126/science.1216744
Chen X L, Lin H J, Deng J. Electrochromic Fiber-shaped Supercapacitors[J]. Adv Mater, 2014,26(48):8126-8132. doi: 10.1002/adma.201403243
Yang Z B, Deng J, Chen X L. A Highly Stretchable, Fiber-shaped Supercapacitor[J]. Angew Chem Int Ed, 2013,52(50):13453-13457. doi: 10.1002/anie.201307619
Hu Y, Cheng H H, Zhao F. All-in-One Graphene Fiber Supercapacitor[J]. Nanoscale, 2014,6(12):6448-6451. doi: 10.1039/c4nr01220h
Yu D S, Goh K, Wang H. Scalable Synthesis of Hierarchically Structured Carbon Nanotube-graphene Fibres for Capacitive Energy Storage[J]. Nat Nanotechnol, 2014,9(7):555-562. doi: 10.1038/nnano.2014.93
Zhao X L, Zheng B N, Huang T Q. Graphene-based Single Fiber Supercapacitor with a Coaxial Structure[J]. Nanoscale, 2015,7(21):9399-9404. doi: 10.1039/C5NR01737H
Luo Y F, Zhang Y, Zhao Y. Aligned Carbon Nanotube/Molybdenum Disulfide Hybrids for Effective Fibrous Supercapacitors and Lithium Ion Batteries[J]. J Mater Chem A, 2015,3(34):17553-17557. doi: 10.1039/C5TA04457J
Sheng L Z, Wei T, Liang Y. Vertically Oriented Graphene Nanoribbon Fibers for High-volumetric Energy Density All-solid-state Asymmetric Supercapacitors[J]. Small, 2017,13(22)1700371. doi: 10.1002/smll.v13.22
Meng Y N, Zhao Y, Hu C G. All-graphene Core-sheath Microfibers for All-solid-state, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles[J]. Adv Mater, 2013,25(16):2326-2331. doi: 10.1002/adma.201300132
Kou L, Huang T Q, Zheng B N. Coaxial Wet-spun Yarn Supercapacitors for High-energy Density and Safe Wearable Electronics[J]. Nat Commun, 2014,53754.
Chen S B, Wang L, Huang M M. Reduced Graphene Oxide/Mn3O4 Nanocrystals Hybrid Fiber for Flexible All-solid-state Supercapacitor with Excellent Volumetric Energy Density[J]. Electrochim Acta, 2017,242:10-18. doi: 10.1016/j.electacta.2017.05.013
Ding X T, Zhao Y, Hu C G. Spinning Fabrication of Graphene/Polypyrrole Composite Fibers for All-solid-state, Flexible Fibriform Supercapacitors[J]. J Mater Chem A, 2014,2(31):12355-12360. doi: 10.1039/C4TA01230E
Qu G X, Cheng J L, Li X D. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode[J]. Adv Mater, 2016,28(19):3646-3652. doi: 10.1002/adma.201600689
Sun G Z, Zhang X, Lin R Z. Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors[J]. Angew Chem Int Ed, 2015,54(15):4651-4656. doi: 10.1002/anie.201411533
Zhang D, Miao M, Niu H. Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles[J]. ACS Nano, 2014,8(5):4571-4579. doi: 10.1021/nn5001386
Yao B, Zhang J, Kou T Y. Paper-based Electrodes for Flexible Energy Storage Devices[J]. Adv Sci, 2017,4(7)1700107. doi: 10.1002/advs.v4.7
Mosa I M, Pattammattel A, Kadimisetty K. Ultrathin Graphene-protein Supercapacitors for Miniaturized Bioelectronics[J]. Adv Energy Mater, 2017,7(17)1700358. doi: 10.1002/aenm.201700358
Peng L L, Peng X, Liu B R. Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-performance, Flexible Planar Supercapacitors[J]. Nano Lett, 2013,13(5):2151-2157. doi: 10.1021/nl400600x
Chen T, Dai L M. Carbon Nanomaterials for High-performance Supercapacitors[J]. Mater Today, 2013,16(7/8):272-280.
Bettini L G, Galluzzi M, Podesta A. Planar Thin Film Supercapacitor Based on Cluster-assembled Nanostructured Carbon and Ionic Liquid Electrolyte[J]. Carbon, 2013,59:212-220. doi: 10.1016/j.carbon.2013.03.011
Yoo J J, Balakrishnan K, Huang J S. Ultrathin Planar Graphene Supercapacitors[J]. Nano Lett, 2011,11(4):1423-1427. doi: 10.1021/nl200225j
Li M, Tang Z, Leng M. Flexible Solid-state Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater, 2014,24(47):7495-7502. doi: 10.1002/adfm.v24.47
Li F W, Chen J T, Wang X S. Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes[J]. Adv Funct Mater, 2015,25(29):4601-4606. doi: 10.1002/adfm.201500718
Jo K, Lee S, Kim S M. Stacked Bilayer Graphene and Redox-active Interlayer for Transparent and Flexible High-performance Supercapacitors[J]. Chem Mater, 2015,27(10):3621-3627. doi: 10.1021/cm504801r
Wu Z S, Zheng Y J, Zheng S H. Stacked-layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-rate All-solid-state Pseudocapacitors with Enhanced Volumetric Capacitance[J]. Adv Mater, 2017,29(3)1602960. doi: 10.1002/adma.v29.3
Chen T, Xue Y H, Roy A K. Transparent and Stretchable High-performance Supercapacitors Based on Wrinkled Graphene Electrodes[J]. ACS Nano, 2014,8(1):1039-1046. doi: 10.1021/nn405939w
Hong J Y, Kim W, Cho D. Omnidirectionally Stretchable and Transparent Graphene Electrodes[J]. ACS Nano, 2016,10(10):9446-9455. doi: 10.1021/acsnano.6b04493
Xu Y, Lin Z, Huang X. Flexible Solid-State Supercapacitors Based on Three-Dimensional Grahene Hydrogel Films[J]. ACS Nano, 2013,7(5):4042-4049. doi: 10.1021/nn4000836
Yuan K, Guo-Wang P, Hu T. Nanofibrous and Graphene-templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors[J]. Chem Mater, 2015,27(21):7403-7411. doi: 10.1021/acs.chemmater.5b03290
Yuan K, Hu T, Xu Y. Engineering the Morphology of Carbon Materials:2D Porous Carbon Nanosheets for High-performance Supercapacitors[J]. ChemElectroChem, 2016,3(5):822-828. doi: 10.1002/celc.201500516
Yuan K, Xu Y, Uihlein J. Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors[J]. Adv Mater, 2015,27(42):6714-6721. doi: 10.1002/adma.201503390
Qi D, Liu Y, Liu Z. Design of Architectures and Materials in In-plane Micro-supercapacitors:Current Status and Future Challenges[J]. Adv Mater, 2017,29(5)1602802. doi: 10.1002/adma.201602802
Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as Miniaturized Energy-storage Components for On-chip Electronics[J]. Nat Nanotechnol, 2017,12(1):7-15.
Liu L L, Niu Z Q, Chen J. Design and Integration of Flexible Planar Micro-supercapacitors[J]. Nano Res, 2017,10(5):1524-1544. doi: 10.1007/s12274-017-1448-z
Huang P, Lethien C, Pinaud S. On-chip and Freestanding Elastic Carbon Films for Micro-supercapacitors[J]. Science, 2016,351(6274):691-695. doi: 10.1126/science.aad3345
Yun J, Kim D, Lee G. All-solid-state Flexible Micro-supercapacitor Arrays with Patterned Graphene/MWNT Electrodes[J]. Carbon, 2014,79:156-164. doi: 10.1016/j.carbon.2014.07.055
Yu W, Zhou H, Li B Q. 3D Printing of Carbon Nanotubes-based Microsupercapacitors[J]. ACS Appl Mater Interfaces, 2017,9(5):4597-4604. doi: 10.1021/acsami.6b13904
Li J T, Delekta S S, Zhang P P. Scalable Fabrication and Integration of Graphene Microsupercapacitors Through Full Inkjet Printing[J]. ACS Nano, 2017,11(8):8249-8256. doi: 10.1021/acsnano.7b03354
Liu Z Y, Wu Z S, Yang S. Ultraflexible In-plane Micro-supercapacitors by Direct Printing of Solution-processable Electrochemically Exfoliated Graphene[J]. Adv Mater, 2016,28(11):2217-2222. doi: 10.1002/adma.201505304
El-Kady M F, Kaner R B. Scalable Fabrication of High-power Graphene Micro-supercapacitors for Flexible and On-chip Energy Storage[J]. Nat Commun, 2013,41475. doi: 10.1038/ncomms2446
Zhang L, DeArmond D, Alvarez N T. Flexible Micro-supercapacitor Based on Graphene with 3D Structure[J]. Small, 2017,13(10)1603114. doi: 10.1002/smll.v13.10
Wu Z S, Parvez K, Feng X L. Graphene-based In-plane Micro-supercapacitors with High Power and Energy Densities[J]. Nat Commun, 2013,42487.
Liu Z Y, Liu S H, Dong R H. High Power In-plane Micro-supercapacitors Based on Mesoporous Polyaniline Patterned Graphene[J]. Small, 2017,13(14)1603388. doi: 10.1002/smll.v13.14
Zhang P P, Zhu F, Wang F X. Stimulus-responsive Micro-supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window[J]. Adv Mater, 2017,29(7)1604491. doi: 10.1002/adma.201604491
Qi D P, Liu Z Y, Liu Y. Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors[J]. Adv Mater, 2015,27(37):5559-5566. doi: 10.1002/adma.201502549
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049