Citation: LI Ning, CHEN Tao. Recent Progress on Graphene-Based Flexible All-Solid-State Supercapacitors[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 259-271. doi: 10.11944/j.issn.1000-0518.2018.03.170381 shu

Recent Progress on Graphene-Based Flexible All-Solid-State Supercapacitors

  • Corresponding author: CHEN Tao, tchen@tongji.edu.cn
  • Received Date: 26 October 2017
    Revised Date: 28 November 2017
    Accepted Date: 13 December 2017

    Fund Project: the Shanghai Rising-Star Program 17QA1404300the National Natural Science Foundation of China 51503152Supported by the National Natural Science Foundation of China(No.51503152, No.51702237), the Shanghai Rising-Star Program(No.17QA1404300), the Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Youth Talent Support Program at Shanghaithe National Natural Science Foundation of China 51702237

Figures(6)

  • With the development of electronics towards intelligence, portability and miniaturization, it is necessary to develop high-performance flexible energy storage devices. Due to their high power density, long cycling life, excellent safety, environmentally-friend, and easy realization of flexibility, supercapacitors have attracted increasing attention recently. Graphene-based materials, exhibiting large specific surface area, excellent electrochemical performance and superior mechanical stability, have been widely investigated as electrode materials in flexible all-solid-state supercapacitors. In this review, we introduce the fabrications of graphene-based electrodes, and summarize recent progress on flexible all-solid-state supercapacitors followed by discussing perspective and current challenges of this hot field.
  • 加载中
    1. [1]

      Rogers J A, Someya T, Huang Y G. Materials and Mechanics for Stretchable Electronics[J]. Science, 2010,327(5973):1603-1607. doi: 10.1126/science.1182383

    2. [2]

      Ramuz M, Tee B C K, Tok J B H. Transparent, Optical, Pressure-sensitive Artificial Skin for Large-area Stretchable Electronics[J]. Adv Mater, 2012,24(24):3223-3227. doi: 10.1002/adma.v24.24

    3. [3]

      Majumder S, Mondal T, Deen M J. Wearable Sensors for Remote Health Monitoring[J]. Sensors, 2017,17(1)130.

    4. [4]

      Larson C, Peele B, Li S. Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing[J]. Science, 2016,351(6277):1071-1074. doi: 10.1126/science.aac5082

    5. [5]

      Weng W, Chen P N, He S S. Smart Electronic Textiles[J]. Angew Chem Int Ed, 2016,55(21):6140-6169. doi: 10.1002/anie.201507333

    6. [6]

      Gao Y, Ota H, Schaler E W. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring[J]. Adv Mater, 2017,29(39)1701985. doi: 10.1002/adma.201701985

    7. [7]

      Xie K Y, Wei B Q. Materials and Structures for Stretchable Energy Storage and Conversion Devices[J]. Adv Mater, 2014,26(22):3592-3617. doi: 10.1002/adma.v26.22

    8. [8]

      Hu Y H, Sun X L. Flexible Rechargeable Lithium Ion Batteries:Advances and Challenges in Materials and Process Technologies[J]. J Mater Chem A, 2014,2(28):10712-10738. doi: 10.1039/C4TA00716F

    9. [9]

      Chen T, Peng H S, Durstock M. High-performance Transparent and Stretchable All-solid Supercapacitors Based on Highly Aligned Carbon Nanotube Sheets[J]. Sci Rep, 2014,43612.  

    10. [10]

      Lv T, Yao Y, Li N. Wearable Fiber-shaped Energy Conversion and Storage Devices Based on Aligned Carbon Nanotubes[J]. Nano Today, 2016,11(5):644-660. doi: 10.1016/j.nantod.2016.08.010

    11. [11]

      Chen T, Dai L M. Flexible Supercapacitors Based on Carbon Nanomaterials[J]. J Mater Chem A, 2014,2(28):10756-10775. doi: 10.1039/c4ta00567h

    12. [12]

      Lv T, Yao Y, Li N. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites[J]. Angew Chem Int Ed, 2016,55(32):9191-9195. doi: 10.1002/anie.201603356

    13. [13]

      Chen T, Hao R, Peng H S. High-Performance, Stretchable, Wire-shaped Supercapacitors[J]. Angew Chem Int Ed, 2015,54(2):618-622.  

    14. [14]

      Wen L, Li F, Cheng H M. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage:From Materials to Devices[J]. Adv Mater, 2016,28(22):4306-4337. doi: 10.1002/adma.v28.22

    15. [15]

      Ren W C, Cheng H M. The Global Growth of Graphene[J]. Nat Nanotechnol, 2014,9(10):726-730. doi: 10.1038/nnano.2014.229

    16. [16]

      Bonaccorso F, Colombo L, Yu G H. Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015,347(6217)1246501. doi: 10.1126/science.1246501

    17. [17]

      Li N, Lv T, Yao Y. Compact Graphene/MoS2 Composite Films for Highly Flexible and Stretchable All-solid-state Supercapacitors[J]. J Mater Chem A, 2017,5(7):3267-3273. doi: 10.1039/C6TA10165H

    18. [18]

      Xiao F, Yang S X, Zhang Z Y. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-solid-state Supercapacitor[J]. Sci Rep, 2015,59359. doi: 10.1038/srep09359

    19. [19]

      Dong Y F, Wu Z S, Ren W C. Graphene:A Promising 2D Material for Electrochemical Energy Storage[J]. Sci Bull, 2017,62(10):724-740. doi: 10.1016/j.scib.2017.04.010

    20. [20]

      Novoselov K S, Fal'ko V I, Colombo L. A Roadmap for Graphene[J]. Nature, 2012,490(7419):192-200. doi: 10.1038/nature11458

    21. [21]

      Xu Z, Peng L, Liu Y J. Experimental Guidance to Graphene Macroscopic Wet-spun Fibers, Continuous Papers, and Ultralightweight Aerogels[J]. Chem Mater, 2017,29(1):319-330. doi: 10.1021/acs.chemmater.6b02882

    22. [22]

      Xu Z, Gao C. Graphene Fiber:A New Trend in Carbon Fibers[J]. Mater Today, 2015,18(9):480-492. doi: 10.1016/j.mattod.2015.06.009

    23. [23]

      Yang Z B, Sun H, Chen T. Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45% Energy Conversion Efficiency[J]. Angew Chem Int Ed, 2013,52(29):7545-7548. doi: 10.1002/anie.201301776

    24. [24]

      Meng F C, Lu W B, Li Q W. Graphene-based Fibers:A Review[J]. Adv Mater, 2015,27(35):5113-5131. doi: 10.1002/adma.201501126

    25. [25]

      Xu Z, Liu Y J, Zhao X L. Ultrastiff and Strong Graphene Fibers via Full-scale Synergetic Defect Engineering[J]. Adv Mater, 2016,28(30):6449-6456. doi: 10.1002/adma.201506426

    26. [26]

      Xu Z, Gao C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J]. Nat Commun, 2011,2571. doi: 10.1038/ncomms1583

    27. [27]

      Liu Y J, Xu Z, Zhan J M. Superb Electrically Conductive Graphene Fibers via Doping Strategy[J]. Adv Mater, 2016,28(36):7941-7947. doi: 10.1002/adma.201602444

    28. [28]

      Xin G Q, Yao T K, Sun H T. Highly Thermally Conductive and Mechanically Strong Graphene Fibers[J]. Science, 2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502

    29. [29]

      Li X M, Zhao T S, Wang K L. Directly Drawing Self-assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties[J]. Langmuir, 2011,27(19):12164-12171. doi: 10.1021/la202380g

    30. [30]

      Chen T, Dai L M. Macroscopic Graphene Fibers Directly Assembled from CVD-grown Fiber-shaped Hollow Graphene Tubes[J]. Angew Chem Int Ed, 2015,54(49):14947-14950. doi: 10.1002/anie.201507246

    31. [31]

      Eda G, Fanchini G, Chhowalla M. Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat Nanotechnol, 2008,3(5):270-274. doi: 10.1038/nnano.2008.83

    32. [32]

      Eigler S, Enzelberger-Heim M, Grimm S. Wet Chemical Synthesis of Graphene[J]. Adv Mater, 2013,25(26):3583-3587. doi: 10.1002/adma.201300155

    33. [33]

      Liu L H, Lyu J, Zhao T K. Large Area Preparation of Multilayered Graphene Films by Chemical Vapour Deposition with High Electrocatalytic Activity Toward Hydrogen Peroxide[J]. Mater Technol, 2015,30(A3):A121-A126.  

    34. [34]

      Kumar P, Shahzad F, Yu S. Large-area Reduced Graphene Oxide Thin Film with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness[J]. Carbon, 2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032

    35. [35]

      Xiong Z Y, Liao C L, Han W H. Mechanically Tough Large-area Hierarchical Porous Graphene Films for High-performance Flexible Supercapacitor Applications[J]. Adv Mater, 2015,27(30):4469-4475. doi: 10.1002/adma.v27.30

    36. [36]

      Zhang M, Huang L, Chen J. Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes[J]. Adv Mater, 2014,26(45):7588-7592. doi: 10.1002/adma.v26.45

    37. [37]

      Peng L, Xu Z, Liu Z. Ultrahigh Thermal Conductive yet Superflexible Graphene Films[J]. Adv Mater, 2017,29(27)1700589. doi: 10.1002/adma.v29.27

    38. [38]

      Kim K S, Zhao Y, Jang H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J]. Nature, 2009,457(7230):706-710. doi: 10.1038/nature07719

    39. [39]

      Li X S, Cai W W, An J H. Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245

    40. [40]

      Wang M, Jang S K, Jang W J. A Platform for Large-scale Graphene Electronics-CVD Growth of Single-layer Graphene on CVD-grown Hexagonal Boron Nitride[J]. Adv Mater, 2013,25(19):2746-2752. doi: 10.1002/adma.v25.19

    41. [41]

      Tan R K L, Reeves S P, Hashemi N. Graphene as a Flexible Electrode:Review of Fabrication Approaches[J]. J Mater Chem A, 2017,5(34):17777-17803. doi: 10.1039/C7TA05759H

    42. [42]

      Jiang W, Xin H, Li W. Microcellular 3D Graphene Foam via Chemical Vapor Deposition of Electroless Plated Nickel Foam Templates[J]. Mater Lett, 2016,162:105-109. doi: 10.1016/j.matlet.2015.09.118

    43. [43]

      Deng W, Fang Q L, Zhou X F. Hydrothermal Self-assembly of Graphene Foams with Controllable Pore Size[J]. RSC Adv, 2016,6(25):20843-20849. doi: 10.1039/C5RA26088D

    44. [44]

      Liu T, Huang M L, Li X F. Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids[J]. Carbon, 2016,100:456-464. doi: 10.1016/j.carbon.2016.01.038

    45. [45]

      Zhang Q Q, Zhang F, Medarametla S P. 3D Printing of Graphene Aerogels[J]. Small, 2016,12(13):1702-1708. doi: 10.1002/smll.v12.13

    46. [46]

      Lv J L, Meng Y, Suzuki K. Fabrication of 3D Graphene Foam for a Highly Conducting Electrode[J]. Mater Lett, 2017,196:369-372. doi: 10.1016/j.matlet.2017.03.079

    47. [47]

      Chen Z P, Ren W C, Gao L B. Three-dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nat Mater, 2011,10(6):424-428. doi: 10.1038/nmat3001

    48. [48]

      Du X S, Liu H Y, Mai Y W. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame[J]. ACS Nano, 2016,10(1):453-462. doi: 10.1021/acsnano.5b05373

    49. [49]

      Lv L X, Zhang P P, Cheng H H. Solution-processed Ultraelastic and Strong Air-bubbled Graphene Foams[J]. Small, 2016,12(24):3229-3234. doi: 10.1002/smll.v12.24

    50. [50]

      Zhu Y W, Murali S, Stoller M D. Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011,332(6037):1537-1541. doi: 10.1126/science.1200770

    51. [51]

      Zhu J Y, Childress A S, Karakaya M. Defect-engineered Graphene for High-energy-and High-power-density Supercapacitor Devices[J]. Adv Mater, 2016,28(33):7185-7192. doi: 10.1002/adma.201602028

    52. [52]

      Wu Z S, Winter A, Chen L. Three-dimensional Nitrogen and Boron Co-doped Graphene for High-performance All-solid-state Supercapacitors[J]. Adv Mater, 2012,24(37):5130-5135. doi: 10.1002/adma.201201948

    53. [53]

      Choi B G, Chang S J, Kang H W. High Performance of a Solid-state Flexible Asymmetric Supercapacitor Based on Graphene Films[J]. Nanoscale, 2012,4(16):4983-4988. doi: 10.1039/c2nr30991b

    54. [54]

      El-Kady M F, Strong V, Dubin S. Laser Scribing of High-performance and Flexible Graphene-based Electrochemical Capacitors[J]. Science, 2012,335(6074):1326-1330. doi: 10.1126/science.1216744

    55. [55]

      Chen X L, Lin H J, Deng J. Electrochromic Fiber-shaped Supercapacitors[J]. Adv Mater, 2014,26(48):8126-8132. doi: 10.1002/adma.201403243

    56. [56]

      Yang Z B, Deng J, Chen X L. A Highly Stretchable, Fiber-shaped Supercapacitor[J]. Angew Chem Int Ed, 2013,52(50):13453-13457. doi: 10.1002/anie.201307619

    57. [57]

      Hu Y, Cheng H H, Zhao F. All-in-One Graphene Fiber Supercapacitor[J]. Nanoscale, 2014,6(12):6448-6451. doi: 10.1039/c4nr01220h

    58. [58]

      Yu D S, Goh K, Wang H. Scalable Synthesis of Hierarchically Structured Carbon Nanotube-graphene Fibres for Capacitive Energy Storage[J]. Nat Nanotechnol, 2014,9(7):555-562. doi: 10.1038/nnano.2014.93

    59. [59]

      Zhao X L, Zheng B N, Huang T Q. Graphene-based Single Fiber Supercapacitor with a Coaxial Structure[J]. Nanoscale, 2015,7(21):9399-9404. doi: 10.1039/C5NR01737H

    60. [60]

      Luo Y F, Zhang Y, Zhao Y. Aligned Carbon Nanotube/Molybdenum Disulfide Hybrids for Effective Fibrous Supercapacitors and Lithium Ion Batteries[J]. J Mater Chem A, 2015,3(34):17553-17557. doi: 10.1039/C5TA04457J

    61. [61]

      Sheng L Z, Wei T, Liang Y. Vertically Oriented Graphene Nanoribbon Fibers for High-volumetric Energy Density All-solid-state Asymmetric Supercapacitors[J]. Small, 2017,13(22)1700371. doi: 10.1002/smll.v13.22

    62. [62]

      Meng Y N, Zhao Y, Hu C G. All-graphene Core-sheath Microfibers for All-solid-state, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles[J]. Adv Mater, 2013,25(16):2326-2331. doi: 10.1002/adma.201300132

    63. [63]

      Kou L, Huang T Q, Zheng B N. Coaxial Wet-spun Yarn Supercapacitors for High-energy Density and Safe Wearable Electronics[J]. Nat Commun, 2014,53754.  

    64. [64]

      Chen S B, Wang L, Huang M M. Reduced Graphene Oxide/Mn3O4 Nanocrystals Hybrid Fiber for Flexible All-solid-state Supercapacitor with Excellent Volumetric Energy Density[J]. Electrochim Acta, 2017,242:10-18. doi: 10.1016/j.electacta.2017.05.013

    65. [65]

      Ding X T, Zhao Y, Hu C G. Spinning Fabrication of Graphene/Polypyrrole Composite Fibers for All-solid-state, Flexible Fibriform Supercapacitors[J]. J Mater Chem A, 2014,2(31):12355-12360. doi: 10.1039/C4TA01230E

    66. [66]

      Qu G X, Cheng J L, Li X D. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode[J]. Adv Mater, 2016,28(19):3646-3652. doi: 10.1002/adma.201600689

    67. [67]

      Sun G Z, Zhang X, Lin R Z. Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors[J]. Angew Chem Int Ed, 2015,54(15):4651-4656. doi: 10.1002/anie.201411533

    68. [68]

      Zhang D, Miao M, Niu H. Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles[J]. ACS Nano, 2014,8(5):4571-4579. doi: 10.1021/nn5001386

    69. [69]

      Yao B, Zhang J, Kou T Y. Paper-based Electrodes for Flexible Energy Storage Devices[J]. Adv Sci, 2017,4(7)1700107. doi: 10.1002/advs.v4.7

    70. [70]

      Mosa I M, Pattammattel A, Kadimisetty K. Ultrathin Graphene-protein Supercapacitors for Miniaturized Bioelectronics[J]. Adv Energy Mater, 2017,7(17)1700358. doi: 10.1002/aenm.201700358

    71. [71]

      Peng L L, Peng X, Liu B R. Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-performance, Flexible Planar Supercapacitors[J]. Nano Lett, 2013,13(5):2151-2157. doi: 10.1021/nl400600x

    72. [72]

      Chen T, Dai L M. Carbon Nanomaterials for High-performance Supercapacitors[J]. Mater Today, 2013,16(7/8):272-280.  

    73. [73]

      Bettini L G, Galluzzi M, Podesta A. Planar Thin Film Supercapacitor Based on Cluster-assembled Nanostructured Carbon and Ionic Liquid Electrolyte[J]. Carbon, 2013,59:212-220. doi: 10.1016/j.carbon.2013.03.011

    74. [74]

      Yoo J J, Balakrishnan K, Huang J S. Ultrathin Planar Graphene Supercapacitors[J]. Nano Lett, 2011,11(4):1423-1427. doi: 10.1021/nl200225j

    75. [75]

      Li M, Tang Z, Leng M. Flexible Solid-state Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater, 2014,24(47):7495-7502. doi: 10.1002/adfm.v24.47

    76. [76]

      Li F W, Chen J T, Wang X S. Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes[J]. Adv Funct Mater, 2015,25(29):4601-4606. doi: 10.1002/adfm.201500718

    77. [77]

      Jo K, Lee S, Kim S M. Stacked Bilayer Graphene and Redox-active Interlayer for Transparent and Flexible High-performance Supercapacitors[J]. Chem Mater, 2015,27(10):3621-3627. doi: 10.1021/cm504801r

    78. [78]

      Wu Z S, Zheng Y J, Zheng S H. Stacked-layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-rate All-solid-state Pseudocapacitors with Enhanced Volumetric Capacitance[J]. Adv Mater, 2017,29(3)1602960. doi: 10.1002/adma.v29.3

    79. [79]

      Chen T, Xue Y H, Roy A K. Transparent and Stretchable High-performance Supercapacitors Based on Wrinkled Graphene Electrodes[J]. ACS Nano, 2014,8(1):1039-1046. doi: 10.1021/nn405939w

    80. [80]

      Hong J Y, Kim W, Cho D. Omnidirectionally Stretchable and Transparent Graphene Electrodes[J]. ACS Nano, 2016,10(10):9446-9455. doi: 10.1021/acsnano.6b04493

    81. [81]

      Xu Y, Lin Z, Huang X. Flexible Solid-State Supercapacitors Based on Three-Dimensional Grahene Hydrogel Films[J]. ACS Nano, 2013,7(5):4042-4049. doi: 10.1021/nn4000836

    82. [82]

      Yuan K, Guo-Wang P, Hu T. Nanofibrous and Graphene-templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors[J]. Chem Mater, 2015,27(21):7403-7411. doi: 10.1021/acs.chemmater.5b03290

    83. [83]

      Yuan K, Hu T, Xu Y. Engineering the Morphology of Carbon Materials:2D Porous Carbon Nanosheets for High-performance Supercapacitors[J]. ChemElectroChem, 2016,3(5):822-828. doi: 10.1002/celc.201500516

    84. [84]

      Yuan K, Xu Y, Uihlein J. Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors[J]. Adv Mater, 2015,27(42):6714-6721. doi: 10.1002/adma.201503390

    85. [85]

      Qi D, Liu Y, Liu Z. Design of Architectures and Materials in In-plane Micro-supercapacitors:Current Status and Future Challenges[J]. Adv Mater, 2017,29(5)1602802. doi: 10.1002/adma.201602802

    86. [86]

      Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as Miniaturized Energy-storage Components for On-chip Electronics[J]. Nat Nanotechnol, 2017,12(1):7-15.  

    87. [87]

      Liu L L, Niu Z Q, Chen J. Design and Integration of Flexible Planar Micro-supercapacitors[J]. Nano Res, 2017,10(5):1524-1544. doi: 10.1007/s12274-017-1448-z

    88. [88]

      Huang P, Lethien C, Pinaud S. On-chip and Freestanding Elastic Carbon Films for Micro-supercapacitors[J]. Science, 2016,351(6274):691-695. doi: 10.1126/science.aad3345

    89. [89]

      Yun J, Kim D, Lee G. All-solid-state Flexible Micro-supercapacitor Arrays with Patterned Graphene/MWNT Electrodes[J]. Carbon, 2014,79:156-164. doi: 10.1016/j.carbon.2014.07.055

    90. [90]

      Yu W, Zhou H, Li B Q. 3D Printing of Carbon Nanotubes-based Microsupercapacitors[J]. ACS Appl Mater Interfaces, 2017,9(5):4597-4604. doi: 10.1021/acsami.6b13904

    91. [91]

      Li J T, Delekta S S, Zhang P P. Scalable Fabrication and Integration of Graphene Microsupercapacitors Through Full Inkjet Printing[J]. ACS Nano, 2017,11(8):8249-8256. doi: 10.1021/acsnano.7b03354

    92. [92]

      Liu Z Y, Wu Z S, Yang S. Ultraflexible In-plane Micro-supercapacitors by Direct Printing of Solution-processable Electrochemically Exfoliated Graphene[J]. Adv Mater, 2016,28(11):2217-2222. doi: 10.1002/adma.201505304

    93. [93]

      El-Kady M F, Kaner R B. Scalable Fabrication of High-power Graphene Micro-supercapacitors for Flexible and On-chip Energy Storage[J]. Nat Commun, 2013,41475. doi: 10.1038/ncomms2446

    94. [94]

      Zhang L, DeArmond D, Alvarez N T. Flexible Micro-supercapacitor Based on Graphene with 3D Structure[J]. Small, 2017,13(10)1603114. doi: 10.1002/smll.v13.10

    95. [95]

      Wu Z S, Parvez K, Feng X L. Graphene-based In-plane Micro-supercapacitors with High Power and Energy Densities[J]. Nat Commun, 2013,42487.  

    96. [96]

      Liu Z Y, Liu S H, Dong R H. High Power In-plane Micro-supercapacitors Based on Mesoporous Polyaniline Patterned Graphene[J]. Small, 2017,13(14)1603388. doi: 10.1002/smll.v13.14

    97. [97]

      Zhang P P, Zhu F, Wang F X. Stimulus-responsive Micro-supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window[J]. Adv Mater, 2017,29(7)1604491. doi: 10.1002/adma.201604491

    98. [98]

      Qi D P, Liu Z Y, Liu Y. Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors[J]. Adv Mater, 2015,27(37):5559-5566. doi: 10.1002/adma.201502549

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    14. [14]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(16)
  • Abstract views(1366)
  • HTML views(357)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return