Citation: WU Weiming, ZHANG Changsong, HOU Shaogang, YANG Shubin. Synthesis of MXenes and MXenes-containing Composites for Energy Storage and Conversions[J]. Chinese Journal of Applied Chemistry, ;2018, 35(3): 317-327. doi: 10.11944/j.issn.1000-0518.2018.03.170379 shu

Synthesis of MXenes and MXenes-containing Composites for Energy Storage and Conversions

  • Corresponding author: YANG Shubin, yangshubin@buaa.edu.cn
  • Received Date: 26 October 2017
    Revised Date: 24 November 2017
    Accepted Date: 13 December 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.U1504218, No.51572007), the Ph.D Initial Scientific Research Fund of Anyang Institute of Technology(No.BSJ2016006)the Ph.D Initial Scientific Research Fund of Anyang Institute of Technology BSJ2016006the National Natural Science Foundation of China 51572007the National Natural Science Foundation of China U1504218

Figures(8)

  • This article reviews recent advances on the synthesis of novel two-dimensional(2D) transitional metal carbides and/or nitrides(MXenes), and their applications for electrochemical energy storage and conversions. These applications could be divided into three main categories:rechargeable batteries, supercapacitors, and electro-catalysis. In these applied aspects, 2D MXenes exhibit promising capabilities due to the unique 2D structure, metallic conductivity, hydrophilic surfaces and other merits. Their electrochemical properties could be enhanced further by strategies of intercalating, compositing, doping, assembling and so on. This provides an avenue to exploit, synthesize and apply novel type of MXenes and MXene-based materials for broad fields, such as electrochemical energy storage and conversions, electronics, and catalysts.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Yoo E, Okata T, Akita T. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J]. Nano Lett, 2009,9(6):2255-2259. doi: 10.1021/nl900397t

    3. [3]

      Paek S M, Yoo E, Honma I. Enhanced Cyclic Performance and Lithiumstorage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J]. Nano Lett, 2009,9(1):72-75. doi: 10.1021/nl802484w

    4. [4]

      Yang S, Feng X, Ivanovici S. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage[J]. Angew Chem In Ed, 2010,49(45):8408-8411. doi: 10.1002/anie.201003485

    5. [5]

      WU Weiming, ZHANG Changsong, YANG Shubin. Controllable Synthesis of Sandwich-Like Graphene-Supported Structures for Energy Storage and Conversion[J]. New Carbon Mater, 2017,32(1):1-14.  

    6. [6]

      Naguib M, Kurtoglu M, Presser V. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv Mater, 2011,23(37):4248-4253. doi: 10.1002/adma.201102306

    7. [7]

      Sun D, Wang M, Li Z. Two-Dimensional Ti3C2 as Anode Material for Li-Ion Batteries[J]. Electrochem Commun, 2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026

    8. [8]

      Liang X, Garsuch A, Nazar L F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(13):3907-3911. doi: 10.1002/anie.201410174

    9. [9]

      Lukatskaya M R, Mashtalir O, Ren C E. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide[J]. Science, 2013,6153(6153):1502-1505.  

    10. [10]

      Come J, Naguib M, Rozier P. A Non-aqueous Asymmetric Cell with a Ti2C-based Two-dimensional Negative Electrode[J]. J Electrochem Soc, 2012,159(8):A1368-A1373. doi: 10.1149/2.003208jes

    11. [11]

      Rakhi R B, Ahmed B, Hedhili M N. Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications[J]. Chem Mater, 2015,27(15):5314-5323. doi: 10.1021/acs.chemmater.5b01623

    12. [12]

      Mashtalir O, Lukatskaya M R, Zhao M. Amine-Assisted Delamination of Nb2C MXene for Li-ion Energy Storage Devices[J]. Adv Mater, 2015,27(23):3501-3506. doi: 10.1002/adma.v27.23

    13. [13]

      Mashtalir O, Cook K M, Mochalin V N. Dye Adsorption and Decomposition on Two-dimensional Titanium Carbide in Aqueous Media[J]. J Mater Chem A, 2014,2(35):14334-14338. doi: 10.1039/C4TA02638A

    14. [14]

      Liu X, Wu J, He J. Electromagnetic Interference Shielding Effectiveness of Titanium Carbide Sheets[J]. Mater Lett, 2017,205:261-263. doi: 10.1016/j.matlet.2017.06.101

    15. [15]

      Kim S J, Naguib M, Zhao M. High Mass Loading, Binder-free MXene Anodes for High Areal Capacity Li-Ion Batteries[J]. Electrochim Acta, 2015,163:246-251. doi: 10.1016/j.electacta.2015.02.132

    16. [16]

      Zhang H, Wang L, Shen C. Synthesis of NaV6O15 Nanorods via Thermal Oxidation of Sodium-intercalated 2D V2CTx and Their Electrochemical Properties as Anode for Lithium-Ion Batteries[J]. Electrochim Acta, 2017,248:178-187. doi: 10.1016/j.electacta.2017.07.143

    17. [17]

      Karlsson L H, Birch J, Halim J. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets[J]. Nano Lett, 2015,15(8):4955-4960. doi: 10.1021/acs.nanolett.5b00737

    18. [18]

      Wang L, Zhang H, Wang B. Synthesis and Electrochemical Performance of Ti3C2Tx with Hydrothermal Process[J]. Electron Mater Lett, 2016,12(5):702-710. doi: 10.1007/s13391-016-6088-z

    19. [19]

      Naguib M, Mashtalir O, Carle J. Two-dimensional Transition Metal Carbides[J]. ACS Nano, 2012,6(2):1322-1331. doi: 10.1021/nn204153h

    20. [20]

      Naguib M, Unocic R R, Armstrong B L. Large-scale Delamination of Multi-layers Transition Metal Carbides and Carbonitrides "MXenes"[J]. Dalton Trans, 2015,44(20):9353-9358. doi: 10.1039/C5DT01247C

    21. [21]

      Li G, Tan L, Zhang Y. Highly Efficiently Delaminated Single-layered MXene Nanosheets with Large Lateral Size[J]. Langmuir, 2017,33(36):9000-9006. doi: 10.1021/acs.langmuir.7b01339

    22. [22]

      Joshi S, Wang Q, Puntambekar A. Facile Synthesis of Large Area Two-dimensional Layers of Transition-metal Nitride and Their Use as Insertion Electrodes[J]. ACS Energy Lett, 2017,2(6):1257-1262. doi: 10.1021/acsenergylett.7b00240

    23. [23]

      Tang Q, Zhou Z, Shen P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2(X=F, OH) Monolayer[J]. J Am Chem Soc, 2012,134(40):16909-16916. doi: 10.1021/ja308463r

    24. [24]

      Er D, Li J, Naguib M. Ti3C2 MXene as A High Capacity Electrode Material for Metal(Li, Na, K, Ca) Ion Batteries[J]. ACS Appl Mater Interfaces, 2014,6(14):11173-11179. doi: 10.1021/am501144q

    25. [25]

      Byeon A, Zhao M, Ren C E. Two-dimensional Titanium Carbide MXene as a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(5):4296-4300. doi: 10.1021/acsami.6b04198

    26. [26]

      Sun D, Wang M, Li Z. Two-dimensional Ti3C2 as Anode Material for Li-Ion Batteries[J]. Electrochem Commun, 2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026

    27. [27]

      Wang F, Wang Z, Zhu J. Facile Synthesis SnO2 Nanoparticle-modified Ti3C2 MXene Nanocomposites for Enhanced Lithium Storage Application[J]. J Mater Sci, 2017,52(7):3556-3565. doi: 10.1007/s10853-016-0369-7

    28. [28]

      Guo X, Xie X, Choi S. Sb2O3/MXene(Ti3C2Tx) Hybrid Anode Materials with Enhanced Performance for Sodium-Ion Batteries[J]. J Mater Chem A, 2017,5(24):12445-12452. doi: 10.1039/C7TA02689G

    29. [29]

      Zhang C, Kim S J, Ghidiu M. Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-Ion Batteries[J]. Adv Funct Mater, 2016,26(23):4143-4151. doi: 10.1002/adfm.v26.23

    30. [30]

      Zhao M, Xie X, Ren C R. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage[J]. Adv Mater, 2017,29(37):1702410-1702417. doi: 10.1002/adma.v29.37

    31. [31]

      Rao D, Zhang L, Wang Y. Mechanism on the Improved Performance of Lithium Sulfur Batteries with MXene-based Additives[J]. J Phys Chem C, 2017,121(21):11047-11054. doi: 10.1021/acs.jpcc.7b00492

    32. [32]

      Liang X, Garsuch A, Nazar L F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-performance Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(13):3907-3911. doi: 10.1002/anie.201410174

    33. [33]

      Bao W, Xie X, Xu J. Confined Sulfur in 3D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium Sulfur Battery[J]. Chem Eur J, 2017,23(51):12613-12619. doi: 10.1002/chem.201702387

    34. [34]

      Liang X, Rangom Y, Kwok C Y. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts[J]. Adv Mater, 2017,29(3):1603040-1603047. doi: 10.1002/adma.v29.3

    35. [35]

      Song J, Su D, Xie X. Immobilizing Polysulfides with MXene-functionalized Separators for Stable Lithium-sulfur Batteries[J]. ACS Appl Mater Interfaces, 2016,8(43):29427-29433. doi: 10.1021/acsami.6b09027

    36. [36]

      Li B, Zhang D, Liu Y. Flexible Ti3C2 MXene-lithium Film with Lamellar Structure for Ultrastable Metallic Lithium Anodes[J]. Nano Energy, 2017,39:654-661. doi: 10.1016/j.nanoen.2017.07.023

    37. [37]

      Zhang C J, Pinilla S, McEvoy N. Oxidation Stability of Colloidal Two-dimensional Titanium Carbides(MXenes)[J]. Chem Mater, 2017,29(11):4848-4856. doi: 10.1021/acs.chemmater.7b00745

    38. [38]

      Wu X, Wang Z, Yu M. Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability[J]. Adv Mater, 2017,29(24):1607017-1607025. doi: 10.1002/adma.201607017

    39. [39]

      Hu M, Li Z, Zhang H. Self-assembled Ti3C2Tx MXene Film with High Gravimetric Capacitance[J]. Chem Commun, 2015,51(70):13531-13533. doi: 10.1039/C5CC04722F

    40. [40]

      Dall'Agnese Y, Taberna P L, Gogotsi Y. Two-dimensional Vanadium Carbide(MXene) as Positive Electrode for Sodium-ion Capacitors[J]. J Phys Chem Lett, 2015,6(12):2305-2309. doi: 10.1021/acs.jpclett.5b00868

    41. [41]

      Wang X, Kajiyama S, Iinuma H. Pseudocapacitance of MXene Nanosheets for High-power Sodium-Ion Hybrid Capacitors[J]. Nature Commun, 2015,66544. doi: 10.1038/ncomms7544

    42. [42]

      Xu S, Wei G, Li J. Binder-free Ti3C2Tx MXene Electrode Film for Supercapacitor Produced by Electrophoretic Deposition Method[J]. Chem Eng J, 2017,317:1026-1036. doi: 10.1016/j.cej.2017.02.144

    43. [43]

      Kurra N, Ahmed B, Gogotsi Y. MXene-on-Paper Coplanar Microsupercapacitors[J]. Adv Energy Mater, 2016,6(24):1601372-1601380. doi: 10.1002/aenm.201601372

    44. [44]

      Li J, Yuan X, Lin C. Achieving High Pseudocapacitance of 2D Titanium Carbide(MXene) by Cation Intercalation and Surface Modification[J]. Adv Energy Mater, 2017,7(15):1602725-1602733. doi: 10.1002/aenm.201602725

    45. [45]

      Dall'Agnese Y, Lukatskay M R, Cook K M. High Capacitance of Surface-modified 2D Titanium Carbide in Acidic Electrolyte[J]. Electrochem Commun, 2014,48:118-122. doi: 10.1016/j.elecom.2014.09.002

    46. [46]

      Ling Z, Ren C E, Zhao M. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance[J]. PNAS, 2014,111(47):16676-16681. doi: 10.1073/pnas.1414215111

    47. [47]

      Lin S, Zhang X. Two-dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor[J]. J Power Sources, 2015,294:354-359. doi: 10.1016/j.jpowsour.2015.06.082

    48. [48]

      Tian Y, Yang C, Que W. Flexible and Free-standing 2D Titanium Carbide Film Decorated with Manganese Oxide Nanoparticles as A High Volumetric Capacity Electrode for Supercapacitor[J]. J Power Sources, 2017,359:332-339. doi: 10.1016/j.jpowsour.2017.05.081

    49. [49]

      Wang H, Zhang J, Wu Y. Achieving High-rate Capacitance of Multi-layer Titanium Carbide(MXene) by Liquid-Phase Exfoliation Through Li-Intercalation[J]. Electrochem Commun, 2017,81:48-51. doi: 10.1016/j.elecom.2017.05.009

    50. [50]

      Ghidiu M, Kota S, Halim J. Alkylammonium Cation Intercalation into Ti3C2(MXene):Effects on Properties and Ion-Exchange Capacity Estimation[J]. Chem Mater, 2017,29(3):1099-1106. doi: 10.1021/acs.chemmater.6b04234

    51. [51]

      Luo J, Zhang W, Yuan H. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-performance Lithium-Ion Capacitors[J]. ACS Nano, 2017,11(3):2459-2469. doi: 10.1021/acsnano.6b07668

    52. [52]

      Boota M, Pasini M, Galeotti F. Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-dimensional Titanium Carbide(MXene):Intercalation and Pseudocapacitance[J]. Chem Mater, 2017,29(7):2731-2738. doi: 10.1021/acs.chemmater.6b03933

    53. [53]

      Zhu M, Huang Y, Deng Q. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene[J]. Adv Energy Mater, 2016,6(21):1600969-1600978. doi: 10.1002/aenm.201600969

    54. [54]

      Wen y, Rufford T E, Chen X. Nitrogen-doped Ti3C2Tx MXene Electrodes for High-performance Supercapacitors[J]. Nano Energy, 2017,38:368-376. doi: 10.1016/j.nanoen.2017.06.009

    55. [55]

      Zhang C, Beidaghi M, Naguib M. Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials[J]. Chem Mater, 2016,28(11):3937-3943. doi: 10.1021/acs.chemmater.6b01244

    56. [56]

      Xu S, Wei G, Li J. Flexible MXene-Graphene Electrodes with High Volumetric Capacitance for Integrated Co-Cathode Energy Conversion/Storage Devices[J]. J Mater Chem A, 2017,5(33):17442-17451. doi: 10.1039/C7TA05721K

    57. [57]

      Yan J, Ren Chang, Maleski K. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance[J]. Adv Funct Mater, 2017,27(30):1701264-1701274. doi: 10.1002/adfm.201701264

    58. [58]

      Kajiyama S, Szabova L, Iinuma H. Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination[J]. Adv Energy Mater, 2017,7(9):1601873-1601881. doi: 10.1002/aenm.201601873

    59. [59]

      Xia Q, Fu J, Yun J M. High Volumetric Energy Density Annealed-MXene Nickel Oxide/MXene Asymmetric Supercapacitor[J]. RSC Adv, 2017,7:11000-11011. doi: 10.1039/C6RA27880A

    60. [60]

      Lin S, Zhang X. Two-dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor[J]. J Power Sources, 2015,294:354-359. doi: 10.1016/j.jpowsour.2015.06.082

    61. [61]

      She Z W, Fredrickson K D, Anasori B. Two-dimensional Molybdenum Carbide(MXene) as an Efficient Electrocatalyst for Hydrogen Evolution[J]. ACS Energy Lett, 2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247

    62. [62]

      Zhao L, Dong B, Li S. Interdiffusion Reaction-assisted Hybridization of Two-dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution[J]. ACS Nano, 2017,11(6):5800-5807. doi: 10.1021/acsnano.7b01409

    63. [63]

      Zhang Z, Li H, Zou G. Self-reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity[J]. ACS Sustainable Chem Eng, 2016,4(12):6763-6771. doi: 10.1021/acssuschemeng.6b01698

    64. [64]

      Shao M, Shao Y, Chai J. Synergistic Effect of 2D Ti2C and g-C3N4 for Efficient Photocatalytic Hydrogen Production[J]. J Mater Chem A, 2017,5(32):16748-16756. doi: 10.1039/C7TA04122E

    65. [65]

      Yang L, Kimmel Y C, Lu Q. Effect of Pretreatment Atmosphere on the Particle Size and Oxygen Reduction Activity of Low-loading Platinum Impregnated Titanium Carbide Powder Electrocatalysts[J]. J Power Sources, 2015,287:196-202. doi: 10.1016/j.jpowsour.2015.03.146

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    4. [4]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    5. [5]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    6. [6]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    7. [7]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    8. [8]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    9. [9]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    12. [12]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    13. [13]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    14. [14]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    15. [15]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    19. [19]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    20. [20]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

Metrics
  • PDF Downloads(5)
  • Abstract views(560)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return