Citation: HUANG Zike, LIU Chao, FU Qiangqiang, LI Jin, ZOU Jianmei, XIE Sitao, QIU Liping. Aptamer-based Fluorescence Probe for Bioanalysis and Bioimaging[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 28-39. doi: 10.11944/j.issn.1000-0518.2018.01.170363 shu

Aptamer-based Fluorescence Probe for Bioanalysis and Bioimaging

  • Corresponding author: QIU Liping, qiuliping@hnu.edu.cn
  • Received Date: 13 October 2017
    Revised Date: 22 November 2017
    Accepted Date: 24 November 2017

    Fund Project: the National Natural Science Foundation of China 21505039Supported by the National Natural Science Foundation of China(No.21505039)

Figures(14)

  • Aptamers are oligonucleotides selected through an in vitro method known as systematic evolution of ligands by exponential enrichment(SELEX), which can recognize target with high specificity and high affinity. Aptamers have attracted wide attention because of their intrinsic advantages including simple synthesis, low molecular mass, high chemical stability, easy biochemical modification and so on. Aptamers can fold into specific two-dimensional or three-dimensional configurations and specifically bind with their targets. With appropriate signal transduction mechanism, aptamers can provide ideal molecular recognition and detection probes for biological research. Fluorescence is a type of detection technology that has several superiorities of high sensitivity, high resolution and easy multiplex detection. With the combination of the molecular recognition capability of aptamers and the outstanding detection performance of fluorescence technology, the aptamer-based fluorescence probes have been widely used in the study of life science. This review highlights the major progress of aptamer-based fluorescence probes in both bioanalysis and bioimaging area, and discusses the current limitations of aptamer probe for applications.
  • 加载中
    1. [1]

      And Y L, Breaker R R. Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2-Hydroxyl Group[J]. J Am Chem Soc, 1999,121(23):5364-5372. doi: 10.1021/ja990592p

    2. [2]

      Watson J D, Crick F H. Molecular Structure of Nucleic Acids[J]. Nature, 1953,171(4356):737-738. doi: 10.1038/171737a0

    3. [3]

      Chargaff E. Preface to a Grammar of Biology[J]. Science, 1971,172(3984):637-642. doi: 10.1126/science.172.3984.637

    4. [4]

      Rich A, Zhang S. Z-DNA:The Long Road to Biological Function[J]. Nat Rev Gene, 2003,4(7):566-572. doi: 10.1038/nrg1115

    5. [5]

      Darzynkiewicz Z. Nucleic Acid Analysis[J]. Anal Chem, 2017,71(18):425-438.

    6. [6]

      Ryoo S R, Lee J, Yeo J. Quantitative and Multiplexed Micro RNA Sensing in Living Cells Based on Peptide Nucleic Acid and Nano Graphene Oxide(Pango)[J]. ACS Nano, 2013,7(7):5882-5891. doi: 10.1021/nn401183s

    7. [7]

      Frauenfelder H, Petsko G A, Tsernoglou D. Temperature-Dependent X-ray Diffraction as a Probe of Protein Structural Dynamics[J]. Nature, 1979,280(5723):558-563. doi: 10.1038/280558a0

    8. [8]

      Žoldák G, Rief M. Force as a Single Molecule Probe of Multidimensional Protein Energy Landscapes[J]. Curr Opin Struct Biol, 2013,23(1):48-57. doi: 10.1016/j.sbi.2012.11.007

    9. [9]

      Zhou J, Rossi J. Aptamers as Targeted Therapeutics:Current Potential and Challenges[J]. Nat Rev Drug Discovery, 2017,16(3):181-202. doi: 10.1038/nrd.2016.199

    10. [10]

      Ma H, Liu J, Ali M M. Nucleic Acid Aptamers in Cancer Research, Diagnosis and Therapy[J]. Chem Soc Rev, 2015,44(5):1240-1256. doi: 10.1039/C4CS00357H

    11. [11]

      Park J, Song M, Jang W. Peptide Nucleic Acid Probe-Based Fluorescence Melting Curve Analysis for Rapid Screening of Common JAK2, MPL, and CALR Mutations[J]. Clin Chim Acta, 2017,465:82-90. doi: 10.1016/j.cca.2016.12.002

    12. [12]

      Liu J, Cao Z, Lu Y. Functional Nucleic Acid Sensors[J]. Chem Rev, 2009,109(5):1962-1968.  

    13. [13]

      Li J J, Fang X, Schuster S M. Molecular Beacons:A Novel Approach to Detect Protein-DNA Interactions[J]. Angew Chem, 2000,39(6):1049-1052. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Hamaguchi N, Ellington A, Stanton M. Aptamer Beacons for the Direct Detection of Proteins[J]. Anal Biochem, 2001,294(2):126-131. doi: 10.1006/abio.2001.5169

    15. [15]

      Stojanovic M N, De P P, Landry D W. Aptamer-based Folding Fluorescent Sensor for Cocaine[J]. J Am Chem Soc, 2001,123(21):4928-4931. doi: 10.1021/ja0038171

    16. [16]

      Yang C J, Jockusch S, Vicens M. Light-Switching Excimer Probes for Rapid Protein Monitoring in Complex Biological Fluids[J]. Proc Natl Acad Sci USA, 2005,102(48):17278-17283. doi: 10.1073/pnas.0508821102

    17. [17]

      Yamamoto R, Baba T, Kumar P K. Molecular Beacon Aptamer Fluoresces in the Presence of Tat Protein of HIV-1[J]. Genes Cells, 2000,5(5):389-396. doi: 10.1046/j.1365-2443.2000.00331.x

    18. [18]

      Stojanovic M N, And P D P, Landry D W. Fluorescent Sensors Based on Aptamer Self-Assembly[J]. J Am Chem Soc, 2000,122(46):11547-11548. doi: 10.1021/ja0022223

    19. [19]

      Nutiu R, Li Y. Structure-Switching Signaling Aptamers[J]. J Am Chem Soc, 2003,125(16):4771-4778. doi: 10.1021/ja028962o

    20. [20]

      Nutiu R, Li Y. A DNA-protein Nanoengine for "On-Demand" Release and Precise Delivery of Molecules[J]. Angew Chem, 2005,44(34):5464-5467. doi: 10.1002/(ISSN)1521-3773

    21. [21]

      Nutiu R, Li Y. Structure-Switching Signaling Aptamers:Transducing Molecular Recognition into Fluorescence Signaling[J]. Chem-Eur J, 2004,10(8):1868-1876. doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Nutiu R, Li Y. Aptamers with Fluorescence-Signaling Properties[J]. Methods, 2005,37(1):16-25.  

    23. [23]

      Nutiu R, Li Y. In vitro Selection of Structure-Switching Signaling Aptamers[J]. Angew Chem, 2005,44(7):1061-1065. doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Nutiu R, Mei S, Liu Z. Engineering DNA Aptamers and DNA Enzymes with Fluorescence-Signaling Properties[J]. Pure Appl Chem, 2004,76(7/8):1547-1561.  

    25. [25]

      Hartig J S, Najafishoushtari S H, Grüne I. Protein-Dependent Ribozymes Report Molecular Interactions in Realtime[J]. Nat Biotechnol, 2002,20(7):717-722. doi: 10.1038/nbt0702-717

    26. [26]

      Liang C P, Ma P Q, Liu H. Rational Engineering of Dynamic, Entropy-Driven DNA Nanomachine for Intracellular MicroRNA Imaging[J]. Angew Chem, 2017,56(31):9077-9081. doi: 10.1002/anie.201704147

    27. [27]

      Peng H, Li X F, Zhang H. A MicroRNA-initiated DNAzyme Motor Operating in Living Cells[J]. Nat Commun, 2017,8:14378-14390. doi: 10.1038/ncomms14378

    28. [28]

      Farka Z, Juřík T, Kovář D. Nanoparticle-Based Immunochemical Biosensors and Assays:Recent Advances and Challenges[J]. Chem Rev, 2017,117(15):9973-10042. doi: 10.1021/acs.chemrev.7b00037

    29. [29]

      Błaszkiewicz P, Kotkowiak M, Dudkowiak A. Fluorescence Quenching and Energy Transfer in a System of Hybrid Laser Dye and Functionalized Gold Nanoparticles[J]. J Lumin, 2017,183:303-310. doi: 10.1016/j.jlumin.2016.11.023

    30. [30]

      Rajendran M, Ellington A D. In vitro Selection of Molecular Beacons[J]. Nucl Acids Res, 2003,31(19):5700-5713. doi: 10.1093/nar/gkg764

    31. [31]

      Calzada V, Moreno M, Newton J. Development of new PTK7-targeting Aptamer-fluorescent and Radiolabelled Probes for Evaluation as Molecular Imaging Agents:Lymphoma and Melanoma in vivo Proof of Concept[J]. Bioorg Med Chem, 2017,25(3):1163-1171. doi: 10.1016/j.bmc.2016.12.026

    32. [32]

      Nair B G, Nagaoka Y, Morimoto H. Aptamer Conjugated Magnetic Nanoparticles as Nanosurgeons[J]. Nanotechnology, 2010,21(45):455102-455107. doi: 10.1088/0957-4484/21/45/455102

    33. [33]

      Bagalkot V, Zhang L, Levy N E. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer[J]. Nano Lett, 2007,7(10):3065-3070. doi: 10.1021/nl071546n

    34. [34]

      Fang X, Tan W. Aptamers Generated from Cell-selex for Molecular Medicine:A Chemical Biology Approach[J]. Acc Chem Res, 2010,43(1):48-57. doi: 10.1021/ar900101s

    35. [35]

      Jin C, Qiu L, Li J. Cancer Biomarker Discovery Using DNA Aptamers[J]. Analyst, 2016,141(2):461-466. doi: 10.1039/C5AN01918D

    36. [36]

      Wu X, Zhao Z, Bai H. DNA Aptamer Selected Against Pancreatic Ductal Adenocarcinoma for in vivo Imaging and Clinical Tissue Recognition[J]. Theranostics, 2015,5(9):985-994. doi: 10.7150/thno.11938

    37. [37]

      Song Y, Zhu Z, An Y. Selection of DNA Aptamers Against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture[J]. Anal Chem, 2013,85(8):4141-4149. doi: 10.1021/ac400366b

    38. [38]

      Zhang N, Bing T, Shen L. Intercellular Connections Related to Cell-Cell Crosstalk Specifically Recognized by an Aptamer[J]. Angew Chem, 2016,55(12):3914-3918. doi: 10.1002/anie.201510786

    39. [39]

      Shi H, He X, Wang K. Activatable Aptamer Probe for Contrast-Enhanced in vivo Cancer Imaging Based on Cell Membrane Protein-Triggered Conformation Alteration[J]. Proc Natl Acad Sci USA, 2011,108(10):3900-3905. doi: 10.1073/pnas.1016197108

    40. [40]

      Sun Y, Chen C S, Fu J. Forcing Stem Cells to Behave:A Biophysical Perspective of the Cellular Microenvironment[J]. Annu Rev Biophys, 2012,41(1):519-542. doi: 10.1146/annurev-biophys-042910-155306

    41. [41]

      Wang H, Leinwand L A, Anseth K S. Cardiac Valve Cells and Their Microenvironment-Insights from in vitro Studies[J]. Nat Rev Cardiol, 2014,11(12):715-727. doi: 10.1038/nrcardio.2014.162

    42. [42]

      Zhao W, Schafer S, Choi J. Cell-Surface Sensors for Real-Time Probing of Cellular Environments[J]. Nat Nanotechnol, 2011,6(8):524-531. doi: 10.1038/nnano.2011.101

    43. [43]

      Watt F M, Huck W T S. Role of the Extracellular Matrix in Regulating Stem Cell Fate[J]. Nat Rev Mol Cell Biol, 2013,14(8):467-473. doi: 10.1038/nrm3620

    44. [44]

      Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics[J]. Nat Rev Mol Cell Biol, 2010,11(6):427-439. doi: 10.1038/nrm2900

    45. [45]

      Rissin D M, Kan C W, Campbell T G. Single-molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations[J]. Nat Biotechnol, 2010,28(6):595-599. doi: 10.1038/nbt.1641

    46. [46]

      Ali M M, Kang D K, Tsang K. Cell-Surface Sensors:Lighting the Cellular Environment[J]. Wires Nanomed Nanobotechnol, 2012,4(5):547-561. doi: 10.1002/wnan.v4.5

    47. [47]

      Tokunaga T, Namiki S, Yamada K. Cell Surface-Anchored Fluorescent Aptamer Sensor Enables Imaging of Chemical Transmitter Dynamics[J]. J Am Chem Soc, 2012,134(23):9561-9564. doi: 10.1021/ja302551p

    48. [48]

      You M, Lyu Y, Han D. DNA Probes for Monitoring Dynamic and Transient Molecular Encounters on Live Cell Membranes[J]. Nat Nanotechnol, 2017,12(5):453-459. doi: 10.1038/nnano.2017.23

    49. [49]

      Johnston D S. The Intracellular Localization of Messenger RNAs[J]. Cell, 1995,81(2):161-170. doi: 10.1016/0092-8674(95)90324-0

    50. [50]

      Bao G, Rhee W J, Tsourkas A. Fluorescent Probes for Live-Cell RNA Detection[J]. Annu Rev Biomed Eng, 2009,11(1):25-47. doi: 10.1146/annurev-bioeng-061008-124920

    51. [51]

      Boussif O, Lezoualc'h F, Zanta M A. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo:Polyethylenimine[J]. Proc Natl Acad Sci USA, 1995,92(16):7297-7301. doi: 10.1073/pnas.92.16.7297

    52. [52]

      Qiu L, Wu C, You M. A Targeted, Self-delivered and Photocontrolled Molecular Beacon for mRNA Detection in Living Cells[J]. J Am Chem Soc, 2013,135(35):12952-12955. doi: 10.1021/ja406252w

    53. [53]

      Wang Y, Li Z, Hu D. Aptamer/Graphene Oxide Nanocomplex for in situ Molecular Probing in Living Cells[J]. J Am Chem Soc, 2010,132(27):9274-9276. doi: 10.1021/ja103169v

    54. [54]

      Wu C, Chen T, Han D. Engineering of Switchable Aptamer Micelle Flares for Molecular Imaging in Living Cells[J]. ACS Nano, 2013,7(7):5724-5731. doi: 10.1021/nn402517v

    55. [55]

      Tan Y, Shi Y, Wu X. DNA Aptamers that Target Human Glioblastoma Multiforme Cells Overexpressing Epidermal Growth Factor Receptor Variant Ⅲ in vitro[J]. Acta Pharmacol Sin, 2013,34(12):1491-1498. doi: 10.1038/aps.2013.137

    56. [56]

      Ambudkar S V, Kimchisarfaty C, Sauna Z E. P-glycoprotein:From Genomics to Mechanism[J]. Oncogene, 2003,22(47):7468-7485. doi: 10.1038/sj.onc.1206948

    57. [57]

      Qiu L, Chen T, Oçsoy I. A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy[J]. Nano Lett, 2015,15(1):457-463. doi: 10.1021/nl503777s

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(147)
  • Abstract views(7034)
  • HTML views(1881)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return