Citation: XU Yulin, LIU Chunrong. Research Progress on Fluorescence Detection of Methionine Sulfoxide/Methionine Sulfoxide Reductases[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 21-27. doi: 10.11944/j.issn.1000-0518.2018.01.170338 shu

Research Progress on Fluorescence Detection of Methionine Sulfoxide/Methionine Sulfoxide Reductases

  • Corresponding author: LIU Chunrong, liucr@mail.ccnu.edu.cn
  • Received Date: 18 September 2017
    Revised Date: 9 October 2017
    Accepted Date: 11 October 2017

    Fund Project: the Nationan Natural Science Foundation of China 21502064Supported by the Nationan Natural Science Foundation of China(No.21502064)

Figures(4)

  • As a new type of protein redox-based post-translational modification acting as a molecular switch for the modulation of protein functions, the protein methionine sulfoxidation not only acts as a biomarker of cellular oxidative stress, but also regulates redox signaling transductions, which is thus closely related to many diseases, especially neurodegenerative diseases. In many organisms, the only molecule known to reduce the methionine sulfoxide is methionine sulfoxide reductases(Msrs), which can repair the oxidation damage and recover the function of protein thus play important roles in cellular redox balance regulations. In this article, we will first discuss the structure and catalytic mechanism of protein methionine sulfoxide(MetO) and Msrs, then review the recently developed fluorescent probes for MetO/Msrs type A(MsrA), and give a brief prospect at the last.
  • 加载中
    1. [1]

      Roos G, Messens J. Protein Sulfenic Acid Formation:From Cellular Damage to Redox Regulation[J]. Free Radical Biol Med, 2011,51(2):314-326. doi: 10.1016/j.freeradbiomed.2011.04.031

    2. [2]

      Li X Y, Fang P, Mai J T. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers[J]. J Hematol Oncol, 2013,6(1):1-19.  

    3. [3]

      Chen X Q, Zhou Y, Peng X J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem Soc Rev, 2010,39(6):2120-2135. doi: 10.1039/b925092a

    4. [4]

      Holmström K M, Finkel T. Cellular Mechanisms and Physiological Consequences of Redox-dependent Signalling[J]. Nat Rev Mol Cell Biol, 2014,15(6):411-421. doi: 10.1038/nrm3801

    5. [5]

      WANG Chao, JIANG Liang, WANG Yong. Characteristics of Methionine Sulfoxide Reductases Structure and Relationship with Neurodegenerative Diseases[J]. Sci Sin Chim, 2014,44(4):586-600.  

    6. [6]

      Nakao L S, Iwai L K, Kalil J. Radical Production from Free and Peptide-Bound Methionine Sulfoxide Oxidation by Peroxynitrite and Hydrogen Peroxide/Iron(Ⅱ)[J]. FEBS Lett, 2003,547(1/2/3):87-91.  

    7. [7]

      Makukhin N, Tretyachenko V, Moskovitz J. A Ratiometric Fluorescent Probe for Imaging of the Activity of Methionine Sulfoxide Reductase A in Cells[J]. Angew Chem Int Ed, 2016,128(41):12919-12922. doi: 10.1002/ange.201605833

    8. [8]

      Drazic A, Miura H, Peschek J. Methionine Oxidation Activates a Transcription Factor in Response to Oxidative Stress[J]. Proc Natl Acad Sci USA, 2013,110(23):9493-9498. doi: 10.1073/pnas.1300578110

    9. [9]

      Hung R J, Pak C W, Terman J R. Direct Redox Regulation of F-Actin Assembly and Disassembly by Mical[J]. Science, 2011,334(6063):1710-1713. doi: 10.1126/science.1211956

    10. [10]

      Erickson J R, Joiner M L A, Guan X Q. A Dynamic Pathway for Calcium-Independent Activation of CaMKⅡ by Methionine Oxidation[J]. Cell, 2008,133(3):462-474. doi: 10.1016/j.cell.2008.02.048

    11. [11]

      ZHANG Liangwei, LIU Ruijuan, KANG Jie. A Novel Fluorescent Probe for Methionine Sulfoxide Reductases[J]. Sci Sin Chim, 2017,47:1-8.  

    12. [12]

      Antoine M, Gand A, Boschi-Muller S. Characterization of the Amino Acids from Neisseria meningitidis MsrA Involved in the Chemical Catalysis of the Methionine Sulfoxide Reduction Step[J]. J Biol Chem, 2006,281(51):39062-39070. doi: 10.1074/jbc.M608844200

    13. [13]

      Péterfi Z, Tarrago L, Gladyshev V N. Practical Guide for Dynamic Monitoring of Protein Oxidation Using Genetically Encoded Ratiometric Fluorescent Biosensors of Methionine Sulfoxide[J]. Methods, 2016,109:149-157. doi: 10.1016/j.ymeth.2016.06.022

    14. [14]

      Cabreiro F, Picot C R, Perichon M. Overexpression of Methionine Sulfoxide Reductases A and B2 Protects MOLT-4 Cells Against Zinc-Induced Oxidative Stress[J]. Antioxid Redox Signaling, 2008,11(2):215-226.  

    15. [15]

      Romero H M, Berlett B S, Jensen P J. Investigations into the Role of the Plastidial Peptide Methionine Sulfoxide Reductase in Response to Oxidative Stress in Arabidopsis[J]. Plant Physiol, 2004,136(3):3784-3794. doi: 10.1104/pp.104.046656

    16. [16]

      Ruan H Y, Tang X D, Chen M L. High-Quality Life Extension by the Enzyme Peptide Methionine Sulfoxide Reductase[J]. Proc Natl Acad Sci USA, 2002,99(5):2748-2753. doi: 10.1073/pnas.032671199

    17. [17]

      Shchedrina V A, Vorbrüggen G, Lee B C. Overexpression of Methionine-R-Sulfoxide Reductases has no Influence on Fruit Fly Aging[J]. Mech Ageing Dev, 2009,130(7):429-443. doi: 10.1016/j.mad.2009.04.003

    18. [18]

      Gabbita S P, Aksenov M Y, Lovell M A. Decrease in Peptide Methionine Sulfoxide Reductase in Alzheimer's Disease Brain[J]. J Neurochem, 1999,73(4):1660-1666.  

    19. [19]

      Wassef R, Haenold R, Hansel A. Methionine Sulfoxide Reductase A and a Dietary Supplement S-Methyl-L-Cysteine Prevent Parkinson's-Like Symptoms[J]. J Neurosci, 2007,27(47):12808-12816. doi: 10.1523/JNEUROSCI.0322-07.2007

    20. [20]

      Oien D B, Shinogle H E, Moore D S. Clearance and Phosphorylation of Alpha-Synuclein are Anhibited in Methionine Sulfoxide Reductase a Null Yeast Cells[J]. J Mol Neurosci, 2009,39(3):323-332. doi: 10.1007/s12031-009-9274-8

    21. [21]

      Pratico D. Evidence of Oxidative Stress in Alzheimer's Disease Brain and Antioxidant Therapy[J]. Ann N Y Acad Sci, 2008,1147(1):70-78. doi: 10.1196/annals.1427.010

    22. [22]

      Dumont M, Lin M T, Beal M F. Mitochondria and Antioxidant Targeted Therapeutic Strategies for Alzheimer's Disease[J]. J Alzheimer's Dis, 2010,20(S2):S633-S643. doi: 10.3233/JAD-2010-100507

    23. [23]

      Luca A D, Sanna F, Sallese M. Methionine Sulfoxide Reductase A Down-Regulation in Human Breast Cancer Cells Results in a More Aggressive Phenotype[J]. Proc Natl Acad Sci USA, 2010,107(43):18628-18633. doi: 10.1073/pnas.1010171107

    24. [24]

      Dai C B, Wang M H. Characterization and Functional Analysis of Methionine Sulfoxide Reductase A Gene Family in Tomato[J]. Mol Biol Rep, 2012,39(5):6297-6308. doi: 10.1007/s11033-012-1451-0

    25. [25]

      Brunell D, Weissbach H, Hodder P. A High-Throughput Screening Compatible Assay for Activators and Inhibitors of Methionine Sulfoxide Reductase A[J]. Assay Drug Dev Technol, 2010,8(5):615-620. doi: 10.1089/adt.2009.0263

    26. [26]

      Wu P F, Xie N, Zhang J J. Resveratrol Preconditioning Increases Methionine Sulfoxide Reductases A Expression and Enhances Resistance of Human Neuroblastoma Cells to Neurotoxins[J]. J Nutr Biochem, 2013,24(6):1070-1077. doi: 10.1016/j.jnutbio.2012.08.005

    27. [27]

      Tarrago L, Péterfi Z, Lee B C. Monitoring Methionine Sulfoxide with Stereospecific Mechanism-Based Fluorescent Sensors[J]. Nat Chem Biol, 2015,11(5):332-338. doi: 10.1038/nchembio.1787

    28. [28]

      Mislow K, Axelrod M, Rayner D R. Light-Induced Pyramidal Inversion of Sulfoxides1[J]. J Am Chem Soc, 1965,87(21):4958-4959. doi: 10.1021/ja00949a052

    29. [29]

      Moskovitz J, Rahman M A, Strassman J. Escherichia coli Peptide Methionine Sulfoxide Reductase Gene:Regulation of Expression and Role in Protecting Against Oxidative Damage[J]. J Bacteriol, 1995,177(3):502-507. doi: 10.1128/jb.177.3.502-507.1995

    30. [30]

      Zhang L W, Peng S J, Sun J Y. A Specific Fluorescent Probe Reveals Compromised Activity of Methionine Sulfoxide Reductases in Parkinson's Disease[J]. Chem Sci, 2017,8(4):2966-2972. doi: 10.1039/C6SC04708D

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    11. [11]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    12. [12]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    16. [16]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(8)
  • Abstract views(759)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return