Citation: WANG Dejia, XU Yongqian, SUN Shiguo, LI Hongjuan. Advanced in Fluorescent Probes Based on Excited State Intramolecular Proton Transfer[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 1-20. doi: 10.11944/j.issn.1000-0518.2018.01.170328 shu

Advanced in Fluorescent Probes Based on Excited State Intramolecular Proton Transfer

  • Corresponding author: XU Yongqian, xuyq@nwsuaf.edu.cn
  • Received Date: 11 September 2017
    Revised Date: 26 September 2017
    Accepted Date: 28 September 2017

    Fund Project: the National Natural Science Foundation of China 21476185Supported by the National Natural Science Foundation of China(No. 21676218, No.21476185, 21472016, No.21272030)the National Natural Science Foundation of China 21676218the National Natural Science Foundation of China 21272030the National Natural Science Foundation of China 21472016

Figures(27)

  • Fluorescent probes are gaining more and more attention because of their high selectivity, sensitivity, fast response, simple operation and low detection limit. Compounds based on excited state intramolecular proton transfer(ESIPT) have special excited state photophysical properties, such as high fluorescence quantum yield and large Stokes shift. For fluorescent molecules, the larger Stokes shift can reduce the interference caused by self-absorption and internal filtration, and enhance light-fastness of the molecules and facilitate the emitting of fluorescence. In this review, we summarized these ESIPT fluorescent probes from the classification of targets. The targets for detection were divided into ions(including metal cations and anions), neutral small molecules and biological macromolecules. The existing problems and application prospects of fluorescent molecules based on ESIPT were commented.
  • 加载中
    1. [1]

      Lee M H, Kim J S, Sessler J L. Small Molecule-based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules[J]. Chem Soc Rev, 2015,44(13):4185-4191. doi: 10.1039/C4CS00280F

    2. [2]

      Berezin M Y, Achilefu S. Fluorescence Lifetime Measurements and Biological Imaging[J]. Chem Rev, 2010,110(5):2641-2684. doi: 10.1021/cr900343z

    3. [3]

      Wu J S, Liu W M, Ge J C. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev, 2011,40(7):3483-3495. doi: 10.1039/c0cs00224k

    4. [4]

      Kwon J E, Park S Y. Advanced Organic Optoelectronic Materials:Harnessing Excited-State Intramolecular Proton Transfer(ESIPT) Process[J]. Adv Mater, 2011,23(32):3615-3642. doi: 10.1002/adma.v23.32

    5. [5]

      Hsieh C C, Jiang C M, Chou P T. Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction[J]. Acc Chem Res, 2010,43(10):1364-1374. doi: 10.1021/ar1000499

    6. [6]

      Tang K C, Chang M J, Lin T Y. Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer(ESIPT):White Light Generation in a Single ESIPT System[J]. J Am Chem Soc, 2011,133(44):17738-17745. doi: 10.1021/ja2062693

    7. [7]

      Luxami V, Kumar S. Molecular Half-subtractor Based on 3, 3'-Bis(1H-benzimidazolyl-2-yl)[1, 1']binaphthalenyl-2, 2'-diol[J]. New J Chem, 2008,32(12):2074-2079. doi: 10.1039/b805558k

    8. [8]

      HU Rui, GUO Xudong, YANG Guoqiang. Investigation on the Property of the ESIPT Compounds and Its Application as Fluorescence Chemical Sensor[J]. Imag Sci Photochem, 2013,31(5):335-348. doi: 10.7517/j.issn.1674-0475.2013.05.335

    9. [9]

      Wang J F, Li Y B, Patel N G. A Single Molecular Probe for Multi-analyte(Cr3+, Al3+ and Fe3+) Detection in Aqueous Medium and Its Biological Application[J]. Chem Commun, 2014,50(82):12258-12261. doi: 10.1039/C4CC04731A

    10. [10]

      Chu Q H, Medvetz D A, Pang Y. A Polymeric Colorimetric Sensor with Excited-State Intramolecular Proton Transfer for Anionic Species[J]. Chem Mater, 2007,19(26):6421-6429. doi: 10.1021/cm0713982

    11. [11]

      Ma J, Zhao J Z, Yang P. New Excited State Intramolecular Proton Transfer(ESIPT) Dyes Based on Naphthalimide and Observation of Long-lived Triplet Excited States[J]. Chem Commun, 2012,48(78):9720-9722. doi: 10.1039/c2cc35210a

    12. [12]

      Yang P, Zhao J Z, Wu W H. Accessing the Long-lived Triplet Excited States in Bodipy-conjugated 2-(2-Hydroxyphenyl) Benzothiazole/Benzoxazoles and Applications as Organic Triplet Photosensitizers for Photooxidations[J]. J Org Chem, 2012,77(14):6166-6178. doi: 10.1021/jo300943t

    13. [13]

      Kim T I, Kang H J, Han G. A Highly Selective Fluorescent ESIPT Probe for the Dual Specificity Phosphatase MKP-6[J]. Chem Commun, 2009,39:5895-5897.

    14. [14]

      Hu R, Feng J, Hu D H. A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes[J]. Angew Chem Int Ed, 2010,49(29):4915-4918. doi: 10.1002/anie.v49:29

    15. [15]

      Li X, Tao R R, Hong L J. Visualizing Peroxynitrite Fluxes in Endothelial Cells Reveals the Dynamic Progression of Brain Vascular Injury[J]. J Am Chem Soc, 2015,137(38):12296-12303. doi: 10.1021/jacs.5b06865

    16. [16]

      Sinha S, Chowdhury B, Ghosh P. A Highly Sensitive ESIPT-based Ratiometric Fluorescence Sensor for Selective Detection of Al3+[J]. Inorg Chem, 2016,55(18):9212-9220. doi: 10.1021/acs.inorgchem.6b01170

    17. [17]

      Tang L J, Shi J Z, Huang Z L. An ESIPT-based Fluorescent Probe for Selective Detection of Homocysteine and Its Application in Live-Cell Imaging[J]. Tetrahedron Lett, 2016,57(47):5227-5231. doi: 10.1016/j.tetlet.2016.10.034

    18. [18]

      Klymchenko A S, Shvadchak V V, Yushchenko D A. Excited-State Intramolecular Proton Transfer Distinguishes Microenvironments in Singleand Double-stranded DNA[J]. J Phys Chem B, 2008,112(38):12050-12055. doi: 10.1021/jp8058068

    19. [19]

      Dziuba D, Postupalenko V Y, Spadafora M. A Universal Nucleoside with Strong Two-band Switchable Fluorescence and Sensitivity to the Environment for Investigating DNA Interactions[J]. J Am Chem Soc, 2012,134(24):10209-10213. doi: 10.1021/ja3030388

    20. [20]

      Kenfack C A, Klymchenko A S, Duportail G. Ab Initio Study of the Solvent H-Bonding Effect on ESIPT Reaction and Electronic Transitions of 3-Hydroxychromone Derivatives[J]. Phys Chem Chem Phys, 2012,14(25):8910-8918. doi: 10.1039/c2cp40869d

    21. [21]

      Paul B K, Guchhait N. 1-Hydroxy-2-naphthaldehyde:A Prospective Excited-State Intramolecular Proton Transfer(ESIPT) Probe with Multi-faceted Applications[J]. J Lumin, 2012,132(8):2194-2208. doi: 10.1016/j.jlumin.2012.03.036

    22. [22]

      Hadjoudis E, Mavridis I M. Photochromism and Thermochromism of Schiff Bases in the Solid State:Structural Aspects[J]. Chem Soc Rev, 2004,33(9):579-88.  

    23. [23]

      Han D Y, Kim J M, Kim J H. ESIPT-based Anthraquinonylcalix[4] crown Chemosensor for In3+[J]. Tetrahedron Lett, 2010,51(15):1947-1951. doi: 10.1016/j.tetlet.2010.02.006

    24. [24]

      Schmidtke S J, Underwood D F, Blank D A. Following the Solvent Directly During Ultrafast Excited State Proton Transfer[J]. J Am Chem Soc, 2004,126(28):8620-8621. doi: 10.1021/ja048639g

    25. [25]

      Chien T C, Dias L G, Arantes G M. 1-(2-Quinolyl)-2-naphthol:A New Intra-Intermolecular Photoacid Photobase Molecule[J]. J Photochem Photobiol A, 2008,194(1):37-48. doi: 10.1016/j.jphotochem.2007.07.012

    26. [26]

      SakaiK I, Takahashi S, Kobayashi A. Excited State Intramolecular Proton Transfer(ESIPT) in Six-coordinated Zinc(Ⅱ)-Quinoxaline Complexes with Ligand Hydrogen Bonds:Their Fluorescent Properties Sensitive to Axial Positions[J]. Dalton Trans, 2010,39(8):1989-1995. doi: 10.1039/b919613g

    27. [27]

      ZHANG Peng, ZHANG Youming, LIN Qi. Principle and the Research Progress of Fluorescent Chemosensors for Cations Recognition[J]. Chinese J Org Chem, 2014,37(7):1300-1321.  

    28. [28]

      Gao M, Yu F B, Lv C J. Fluorescent Chemical Probes for Accurate Tumor Diagnosis and Targeting Therapy[J]. Chem Soc Rev, 2017,46(8):2237-2271. doi: 10.1039/C6CS00908E

    29. [29]

      Sinkeldam R W, Greco N J, Tor Y. Fluorescent Analogs of Biomolecular Building Blocks:Design, Properties, and Applications[J]. Chem Rev, 2010,110(5):2579-2619. doi: 10.1021/cr900301e

    30. [30]

      Xu, PangY. Zn2+-Triggered Excited-State Intramolecular Proton Transfer:A Sensitive Probe with Near-infrared Emission from Bis(benzoxazole) Derivative[J]. Dalton Trans, 2011,40(7):1503-1509. doi: 10.1039/c0dt01376e

    31. [31]

      Huang L Y, Gu B, Su W. Proton Donor Modulating ESIPT-based Fluorescent Probes for Highly Sensitive and Selective Detection of Cu2+[J]. RSC Adv, 2015,5(93):76296-76301. doi: 10.1039/C5RA14443D

    32. [32]

      Chen X Q, Pradhan T H, Wang F. Fluorescent Chemosensors Based on Spiroring-opening of Xanthenes and Related Derivatives[J]. Chem Rev, 2012,112(3):1910-1956. doi: 10.1021/cr200201z

    33. [33]

      Xu Y Q, Xiao L L, Zhang Y F. Substituent Effect on Fluorophores Instead of Ionophores:Its Implication in Highly Selective Fluorescent Probes for Zn2+ over Cd2+[J]. RSC Adv, 2014,4(10):4827-4830. doi: 10.1039/c3ra46468g

    34. [34]

      Xu Y Q, Xiao L L, Sun S G. Switchable and Selective Detection of Zn2+ or Cd2+ in Living Cells Based on 3'-O-substituted Arrangement of Benzoxazole-derived Fluorescent Probes[J]. Chem Commun, 2014,50(56):7514-7516. doi: 10.1039/C4CC02335H

    35. [35]

      Gale P A, Caltagirone C. Anion Sensing by Small Molecules and Molecular Ensembles[J]. Chem Soc Rev, 2015,44(13):4212-4227. doi: 10.1039/C4CS00179F

    36. [36]

      Ashton T D, Jolliffe K A, Pfeffer F M. Luminescent Probes for the Bioimaging of Small Anionic Species in Vitro and in Vivo[J]. Chem Soc Rev, 2015,44(14):4547-4595. doi: 10.1039/C4CS00372A

    37. [37]

      Wu Y K, Peng X J, Fan J L. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. J Org Chem, 2007,72(1):62-70. doi: 10.1021/jo061634c

    38. [38]

      Goswami S, Manna A, Paul S. Resonance-assisted Hydrogen Bonding Induced Nucleophilic Addition to Hamper ESIPT:Ratiometric Detection of Cyanide in Aqueous Media[J]. Chem Commun, 2013,49(28):2912-2914. doi: 10.1039/c3cc39256b

    39. [39]

      Porel M, Ramalingam V, Domaradzki M E. Chloride Sensing via Suppression of Excited State Intramolecular Proton Transfer in Squaramides[J]. Chem Commun, 2013,49(16):1633-1635. doi: 10.1039/c3cc38767d

    40. [40]

      Chen W H, Xing Y, Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-on in Water[J]. Org Lett, 2011,13(6):1362-1365. doi: 10.1021/ol200054w

    41. [41]

      Sedgwick A C, Sun X L, Kim G. Boronate Based Fluorescence(ESIPT) Probe for Peroxynitrite[J]. Chem Commun, 2016,52(83):12350-12352. doi: 10.1039/C6CC06829D

    42. [42]

      Pan Y M, Huang J, Han Y F. A New ESIPT-based Fluorescent Probe for Highly Selective and Sensitive Detection of HClO in Aqueous Solution[J]. Tetrahedron Lett, 2017,58(13):1301-1304. doi: 10.1016/j.tetlet.2017.02.043

    43. [43]

      Xiao L L, Sun S G, Pei Z C. A Ga3+ Self-assembled Fluorescent Probe for ATP Imaging in Vivo[J]. Biosens Bioelectron, 2015,65:166-170. doi: 10.1016/j.bios.2014.10.038

    44. [44]

      Chen X Q, Zhou Y, Peng X J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem Soc Rev, 2010,39(6):2120-2135. doi: 10.1039/b925092a

    45. [45]

      Fernandez A, Vendrell M. Smart Fluorescent Probes for Imaging Macrophage Activity[J]. Chem Soc Rev, 2016,45(5):1182-1196. doi: 10.1039/C5CS00567A

    46. [46]

      Xiao L L, Tu J, Sun S G. A Fluorescent Probe for Hydrazine and Its in Vivo Applications[J]. RSC Adv, 2014,4(79):41807-41811. doi: 10.1039/C4RA08101C

    47. [47]

      Chen Z, Zhong X X, Qu W B. A Highly Selective HBT-based "Turn-On" Fluorescent Probe for Hydrazine Detection and Its Application[J]. Tetrahedron Lett, 2017,58(26):2596-2601. doi: 10.1016/j.tetlet.2017.05.071

    48. [48]

      Zhang D, Yang Z H, Li H J. A Simple Excited-State Intramolecular Proton Transfer Probe Based on a New Strategy of Thiol-azide Reaction for the Selective Sensing of Cysteine and Glutathione[J]. Chem Commun, 2016,52(4):749-752. doi: 10.1039/C5CC07298K

    49. [49]

      Goswami S, Manna A, Paul S. A Turn On ESIPT Probe for Rapid and Ratiometric Fluorogenic Detection of Homocysteine and Cysteine in Water with Live Cell-Imaging[J]. Tetrahedron Lett, 2014,55(2):490-494. doi: 10.1016/j.tetlet.2013.11.055

    50. [50]

      Liu X J, Tian H H, Yang L. A Sensitive and Selective Fluorescent Probe for the Detection of Hydrogen Peroxide with a Red Emission and a Large Stokes Shift[J]. Sens Actuators B, 2018,255:1160-1165. doi: 10.1016/j.snb.2017.05.151

    51. [51]

      Li G P, Zhu D J, Liu Q. Rapid Detection of Hydrogen Peroxide Based on Aggregation Induced Ratiometric Fluorescence Change[J]. Org Lett, 2013,15(4):924-927. doi: 10.1021/ol4000845

    52. [52]

      Wang L Q, Zang Q G, Chen W S. A Ratiometric Fluorescent Probe with Excited-State Intramolecular Proton Transfer for Benzoyl Peroxide[J]. RSC Adv, 2013,3(23):8674-8676. doi: 10.1039/c3ra41209a

    53. [53]

      Deng B B, Ren M G, Kong X Q. An ESIPT Based Fluorescent Probe for Imaging Hydrogen Sulfide with a Large Turn-On Fluorescence Signal[J]. RSC Adv, 2016,6(67):62406-62410. doi: 10.1039/C6RA12127F

    54. [54]

      Chen L Y, Wu D, Lim C S. A Two-photon Fluorescent Probe for Specific Detection of Hydrogen Sulfide Based on a Familiar ESIPT Fluorophore Bearing AIE Characteristics[J]. Chem Commun, 2017,53(35):4791-4794. doi: 10.1039/C7CC01695F

    55. [55]

      Yushchenko D A, Fauerbach J A, Thirunavukkuarasu S. Fluorescent Ratiometric MFC Probe Sensitive to Early Stages of α-Synuclein Aggregation[J]. J Am Chem Soc, 2010,132(23):7860-7861. doi: 10.1021/ja102838n

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(195)
  • Abstract views(10437)
  • HTML views(3032)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return