Citation: HAN Xiaoqian, LIN Yunyun, LI Zhen, LIU Wenhua, SHI Ningning, WANG Nong. Preparation and Application of Novel Bonded L-Valine and L-Alanine Derived Chiral Stationary Phases[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 68-74. doi: 10.11944/j.issn.1000-0518.2018.01.170030 shu

Preparation and Application of Novel Bonded L-Valine and L-Alanine Derived Chiral Stationary Phases

  • Corresponding author: HAN Xiaoqian, hanxq@mail.lzjtu.cn
  • Received Date: 12 February 2017
    Revised Date: 27 April 2017
    Accepted Date: 27 April 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21462024)National Natural Science Foundation of China 21462024

Figures(6)

  • Ten novel amino acid derived chiral stationary phases(CSPs), including eight amino acid modified triazine derived CSPs(CSP-1~CSP-8) and two N-p-methylbenzoyl L-amino acid CSPs(CSP-9~CSP-10), were prepared from L-valine and L-alanine. The chiral recognition ability of these CSPs was evaluated for regioisomers of o-, m-, p-nitrophenol and six racemates of naproxen ethyl ester, propiconazole, difenoconazole, tebuconazole, hexaconazole, 1, 1'-bi-2-naphthol, under normal phase mode. The results show that CSP-1~CSP-3 and CSP-6~CSP-8 exhibit good selectivity for three regioisomers of nitrophenol. The CSPs obtained from L-alanine show better enantioselective recognition toward the racemates, which leads to a baseline separation of naproxen ethyl ester on CSP-6. Meanwhile, the binding mode and association energy of L-alanine three-substituted triazine derivative CSP Ⅵ with R or S naproxen ethyl ester were investigated by computational simulation with Gaussian 09 software, and hydrogen bonding was found to be a significant factor on the enantioselective recognition.
  • 加载中
    1. [1]

      Silvia R, Anna R, Joseph J P. Enantiomers Separation by Nano-liquid Chromatography:Use of a Novel Sub-2μm Vancomycin Silica Hydride Stationary Phase[J]. J Chromatogr A, 2015,1381:149-159. doi: 10.1016/j.chroma.2015.01.015

    2. [2]

      Elodie L, Claude V, Saïd Y. Design of Experiments for Enantiomeric Separation in Supercriticalfluid Chromatography[J]. J Pharm Biomed Anal, 2016,120:297-305. doi: 10.1016/j.jpba.2015.12.041

    3. [3]

      Patel D C, Wahab M F, Armstrong D W. Advances in High-throughput and High-efficiency Chiral Liquid Chromatographic Separations[J]. J Chromatogr A, 2016,1467:2-18. doi: 10.1016/j.chroma.2016.07.040

    4. [4]

      CAO Zhigang, LI Laisheng, CHENG Biaoping. Separation and Determination of Diniconazole Enantiomers in Pear on β-Cyclodextrin-based Stationary Phase by HPLC[J]. J Instrum Anal, 2016,35(1):16-22.  

    5. [5]

      Scriba G K E. Chiral Recognition in Separation Science[J]. J Chromatogr A, 2016,1467:56-78. doi: 10.1016/j.chroma.2016.05.061

    6. [6]

      BIN Qin, FU Keqin, ZHANG Junjun. Preparation and Application of Novel Brush-type Chiral Stationary Phases Based on Phenylglycine Derivatives[J]. Chinese J Synth Chem, 2015,23(1):1-6.  

    7. [7]

      HE Xinrui, WU Zhongyong, YE Yongli. Research Progress on Detection of Amino Acids by High Performance Liquid Chromatography[J]. J Instrum Anal, 2016,35(7):922-928.  

    8. [8]

      CHANG Yinxia, ZHOU Lingling, XIANG Lan. Separation of Various Racemates Using D-Phenylglycine as Chiral Stationary Phase[J]. J Instrum Anal, 2007,26(1):107-109.

    9. [9]

      SHEN Conghua, LI Ping, TANG Tao. Preparation of a New Stationary Phase with s-Triazine and Amide Embedded and Its Application in Separation of Basic Compounds[J]. Chinese J Chromatogr, 2013,31(11):1035-1039.  

    10. [10]

      WANG Quan, WANG Kun, SUN Lehua. Synthesis of 2, 4, 6-Tris(amino acids)-1, 3, 5-triazine[J]. Chem Reag, 2012,34(12):1148-1150.  

    11. [11]

      Chen Z L, Fuyumuro T, Watabe K. Influence of Spacers and Organic Modifiers on Chromatographic Behaviors on Chiral Diamide Stationary Phase with N-(3, 5-Dimethylbenzoyl)-d-phenylglycine[J]. Anal Chim Acta, 2004,518:181-189. doi: 10.1016/j.aca.2004.05.039

    12. [12]

      NONG Ruiyu, KONG Jiao, ZHANG Junhui. Chiral Metal-organic Framework {[Co(L-trp)(bpe)(H2O)]·H2O·NO3}n Used for High Performance Liquid Chromatographic Separation[J]. Chem J Chinese Univ, 2016,37(1):19-25. doi: 10.7503/cjcu20120521

    13. [13]

      WEI Enqi, LI Lirong, WU Yufeng. Progress on Analysis Methods for Nitroaromatic Pollutants in Water Matrix[J]. J Instrum Anal, 2016,35(8):1071-1078.  

    14. [14]

      LIU Yu, ZHANG Tonglai, YANG Li. Simultaneous Determination of 14 Nitrophenol Compounds by QuEChERS-Ultra Performance Liquid Chromatography[J]. Chinese J Energ Mater, 2015,23(1):73-79. doi: 10.11943/j.issn.1006-9941.2015.01.015

    15. [15]

      GOU Gaozhang, WANG Zefeng, HUANG Zhaolong. Application of Gaussian 09 Software in Electronic Circular Dichroism Spectroscopy Teaching[J]. Chinese J Chem Edu, 2016,37(2):61-64.  

  • 加载中
    1. [1]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(2)
  • Abstract views(1383)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return