Citation: WAN Lu, FU Zhengbing. Preparation and Characterization of Nitrogen-doped Carbon-coated Lithium Titanate Anode for Lithium-ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 116-122. doi: 10.11944/j.issn.1000-0518.2018.01.170016 shu

Preparation and Characterization of Nitrogen-doped Carbon-coated Lithium Titanate Anode for Lithium-ion Batteries

  • Corresponding author: FU Zhengbing, ceramic423@163.com
  • Received Date: 11 January 2017
    Revised Date: 6 April 2017
    Accepted Date: 6 April 2017

    Fund Project: Educational Commission of Hubei Province B2016184National Natural Science Foundation of China 51402096Supported by the National Natural Science Foundation of China(No.51402096), the Educational Commission of Hubei Province(No.B2016184)

Figures(9)

  • Nitrogen-doped carbon-coated lithium titanate(Li4Ti5O12/NC) composites with high performance were prepared via the sol-gel method by using tetrabutyl titanate as the titanium source, lithium monohydrate as the source of lithium, citric acid as carbon source and carbamide as the source of nitrogen. The composites were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Focuier transform infrared spectrometer(IR), thermal gravimetric analyzer(TG), scanning electron microscoy(SEM) and transmission electron microscopy(TEM). The results show that the composites are consisted of Li4Ti5O12 with a NC coating layer. The Li4Ti5O12/NC material with 9.48% of NC exhibits a better electrochemical performance. It delivers a capacity of 212.9 mA·h/g at the first discharge under 1C, after 100 cycles at 1C, it still retains a capacity of 160.1 mA·h/g. The NC coating does not change the material's morphology, but inhibits the growth of composite particles and increases the active site for Li+ ion insertion/extraction, and thus improves the rate capacity and electronic conductivity.
  • 加载中
    1. [1]

      Jia P Q, Shao Z B, Liu K R. Pretreatments-assisted High Temperature Ball Milling Route to Li4Ti5O12 and Its Electrochemical Performance[J]. J Power Sources, 2014,130(5):71-74.  

    2. [2]

      Belharouak I, Gary M, Koenig J. Electro Chemistry and Safety of Li4Ti5O12 and Graphite Anodes Paired with LiMn2O4 for Hybrid Electric Vehicle Li-ion Battery Applications[J]. J Power Sources, 2011,196(23):10344-10350. doi: 10.1016/j.jpowsour.2011.08.079

    3. [3]

      Scrosati B, Garche J. Lithium Batteries:Status, Prospects and Future[J]. J Power Sources, 2010,195(9):2419-2430. doi: 10.1016/j.jpowsour.2009.11.048

    4. [4]

      Shen L F, Li H G, Evan U. General Strategy for Designing Core-Shell Nanostructured Materials for High-power Lithium Ion Batteries[J]. Nano Lett, 2016,12(11):5673-5678.  

    5. [5]

      Mi R J, Jung Y S, Kang Y M. Tailored Li4Ti5O12 Nanofibers with Outstanding Kinetics for Lithium Rechargeable Batteries[J]. Nanoscale, 2012,4(21):6870-6875. doi: 10.1039/c2nr31675g

    6. [6]

      Kang E, Jung Y S, Kim G H. Highly improved Rate Capability for a Lithium-ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-assembly Method[J]. Adv Funct Mater, 2011,21(22):4349-4357. doi: 10.1002/adfm.201101123

    7. [7]

      Wang Y Q, Gu L, Guo Y G. Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 anode of a Lithium-Ion Battery[J]. J Am Chem Soc, 2012,134(18):7874-7879. doi: 10.1021/ja301266w

    8. [8]

      Liu J X, Wang H K, Yang S L. Single-crystalline Li4Ti5O12 Nanorods and Their Application in High Rate Capability Li4Ti5O12/LiMn2O4 Full Cells[J]. J Power Sources, 2013,242:222-229. doi: 10.1016/j.jpowsour.2013.04.020

    9. [9]

      CAO Shaomei, FENG Xin, ZHANG Dawei. Preparation of Li4Ti5O12 Electrode Material with Refining Sand Milling Technique and Its Electrochemical Performance Research[J]. J Funct Mater, 2014,45(11):11101-11104. doi: 10.3969/j.issn.1001-9731.2014.11.021

    10. [10]

      Li B H, Han C P, He Y B. Facile Synthesis of Li4Ti5O12/C Composite with Super Rate Performance[J]. Energy Environ Sci, 2012,5(11):9595-9602. doi: 10.1039/c2ee22591c

    11. [11]

      Hao Y J, Lai Q Y, Xu Z H. Synthesis by Sol-Gel Method and Electrochemical Properties of Li4Ti5O12 Anode Material for Lithium-Ion Battery[J]. Solid State Ionics, 2005,176(13/14):1201-1206.  

    12. [12]

      Gao J, Ying J R, Jiang C Y. Preparation and Characterization of Spherical La-doped Li4Ti5O12 Anode Material for Lithium Ion Batteries[J]. Ionics, 2009,15(5):597-601. doi: 10.1007/s11581-008-0306-0

    13. [13]

      Hui Y N, Cao L Y, Xu Z W. Mesoporous Li4Ti5O12 Nanoparticles Synthesized by a Microwaveassisted Hydrothermal Method for High Rate Lithium-Ion Batteries[J]. J Electroanal Chem, 2016,763:45-50. doi: 10.1016/j.jelechem.2015.12.042

    14. [14]

      Luo H J, Shen L F, Rui K. Carbon Coated Li4Ti5O12 Nanorods as Superior Anode Material for High Rate Lithium Ion Batteries[J]. J Alloys Compd, 2013,572(32):37-42.

    15. [15]

      Ren Y R, Huang X B, Wang H Y. Li4Ti5O12/C Anode Material with High-rate Performance Using Phenanthroline as Carbon Precursor[J]. Ionics, 2015,21(3):629-634. doi: 10.1007/s11581-014-1235-8

    16. [16]

      Xu H G, Hu X L, Luo W. Electrospun Conformal Li4Ti5O12/C Fibers for High Rate Lithium-ion Batteries[J]. Chem Electro Chem, 2014,1(3):611-616.  

    17. [17]

      YANG Chengzhao, ZHANG Xiaoman, HE Xiandong. Study on the Soft Package Li-ion Battery Using Li4Ti5O12 as Anode Material[J]. J Chinese Battery Ind, 2013,18(3):139-141.  

    18. [18]

      WANG Lei, LIU Xingjiang. Study on Li4Ti5O12 Loaded Activated Carbon for Lithium-Ion Battery/Capacitors[J]. Power Supp Technol Appl, 2009,33(8):662-665.  

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(10)
  • Abstract views(2207)
  • HTML views(1171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return