Citation: CHEN Jianhua, LI Dongyang, LIU Shenghua, TAN Ying, YIN Jun. Recent Advances in Phosgene and Nerve Agents Responsive Fluorescent Probes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1413-1432. doi: 10.11944/j.issn.1000-0518.2017.12.170309 shu

Recent Advances in Phosgene and Nerve Agents Responsive Fluorescent Probes

  • Corresponding author: TAN Ying, tan.ying@sz.tsinghua.edu.cn YIN Jun, yinj@mail.ccnu.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 8 October 2017
    Accepted Date: 9 October 2017

    Fund Project: Supported by the National Natural Science Fundation of China(No.21676113)the National Natural Science Fundation of China 21676113

Figures(33)

  • Highly toxic agents, such as phosgene and nerve agents, cause severe threats to public security and humankind. In contrast to traditional ways, the approaches to detect phosgene and nerve agents are expected to be effective detection in vivo. Fluorescent probes have been applied widely in various research fields due to their high selectivity and sensitivity, excellent cell permeability and so on. Herein, we review recent advances relating to fluorescent probes for phosgene and nerve agents and prospect their future developments.
  • 加载中
    1. [1]

      Price R. A Genealogy of the Chemical Weapons Taboo[J]. Int Org, 1995,49(1):73-103. doi: 10.1017/S0020818300001582

    2. [2]

      Sciuto A M, Stotts R R, Hurt H H. Efficacy of Ibuprofen and Pentoxifylline in the Treatment of Phosgene-induced Acute Lung Injury[J]. Appl Toxicol, 1996,16(5):381-384. doi: 10.1002/(ISSN)1099-1263

    3. [3]

      Noort D, Hulst A G, Fidder A. In Vitro Adduct Formation of Phosgene with Albumin and Hemoglobin in Human Blood[J]. Chem Res Toxicol, 2000,13(8):719-726. doi: 10.1021/tx000022z

    4. [4]

      Bast C B, Glass-Mattie D F. Handbook of Toxicology of Chemical Warfare Agents[M]. 2nd Ed. Boston:Academic Press, 2015:327-335.

    5. [5]

      Andersen L L. Influence of Psychosocial Work Environment on Adherence to Workplace Exercise[J]. J Occup Environ Med, 2011,53:182-184. doi: 10.1097/JOM.0b013e3181207a01f

    6. [6]

      Eckert H, Forster B. Triphosgene, a Crystalline Phosgene Substitute[J]. Angew Chem Int Ed, 1987,26(9):894-895. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Ehrich M. Organophosphates, in Encyclopedia of Toxicology[M]. San Diego:Academic Press, 1998:467-471.

    8. [8]

      Gupta R. Handbook of Toxicology of Chemical Warfare Agents[M], London:Academic Press, 2009.

    9. [9]

      Marrs T C. Organophosphate Poisoning[J]. Pharmacol Ther, 1993,58:51-66. doi: 10.1016/0163-7258(93)90066-M

    10. [10]

      Sidell F R, Borak J. Chemical Warfare Agents:Ⅱ[J]. Ann Emerg Med, 1992,21(7):865-871. doi: 10.1016/S0196-0644(05)81036-4

    11. [11]

      Hill Jr H H, Martin S J. Conventional Analytical Methods for Chemical Warfare Agents[J]. Pure Appl Chem, 2002,74(12):2281-2291.  

    12. [12]

      Brown K. Up in the Air[J]. Science, 2004,305(5688):1228-1229. doi: 10.1126/science.305.5688.1228

    13. [13]

      Eubanks L M, Dickerson T J, Janda K D. Technological Advancements for the Detection of and Protection Against Biological and Chemical Warfare Agents[J]. Chem Soc Rev, 2007,36(3):458-470. doi: 10.1039/b615227a

    14. [14]

      Yao J, Fu Y, Xu W. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection[J]. Anal Chem, 2016,88(4):2497-2501. doi: 10.1021/acs.analchem.5b04777

    15. [15]

      Kim K, Tsay O G, Atwood D A. Destruction and Detection of Chemical Warfare Agents[J]. Chem Rev, 2011,111(9):5345-5430. doi: 10.1021/cr100193y

    16. [16]

      Wu W, Dong J, Wang X. Fluorogenic and Chromogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP[J]. Analyst, 2012,137(14):3224-3226. doi: 10.1039/c2an35428d

    17. [17]

      Yin J, Hu Y, Yoon J. Fluorescent Probes and Bioimaging:Alkali Metals, Alkaline Earth Metals and pH[J]. Chem Soc Rev, 2015,44(14):4619-4644. doi: 10.1039/C4CS00275J

    18. [18]

      Wu D, Chen L, Lee W. Recent Progress in the Development of Organic Dye Based Near-Infrared Fluorescence Probes for Metal Ions[J]. Chem Coord Rev, 2017. doi: 10.1016/j.ccr.2017.06.011

    19. [19]

      Xu Z, Chen J, Hu L L. Recent Advances Formaldehyde-responsive Fluorescent Probes[J]. Chinese Chem Lett, 2017. doi: 10.1016/j.cclet.2017.07.018

    20. [20]

      Zhou X, Lee S, Xu Z. Recent Progress on the Development of Chemosensors for Gases[J]. Chem Rev, 2015,115(15):7944-8000. doi: 10.1021/cr500567r

    21. [21]

      Zhang H, Rudkevich D M. A FRET Approach to Phosgene Detection[J]. Chem Commun, 2007,12(12):1238-1239.  

    22. [22]

      Wu X, Wu Z, Yang Y. A highly Sensitive Fluorogenic Chemodosimeter for Rapid Visual Detection of Phosgene[J]. Chem Commun, 2012,48(13):1895-1897. doi: 10.1039/c2cc17411a

    23. [23]

      Zhang Y, Peng A, Jie X. A BODIPY-Based Fluorescent Probe for Detection of Subnanomolar Phosgene with Rapid Response and High Selectivity[J]. ACS Appl Mater Interfaces, 2017,9(16):13920-13927. doi: 10.1021/acsami.7b02013

    24. [24]

      Hu Y, Chen L, Jung H. Effective Strategy for Colorimetric and Fluorescence Sensing of Phosgene Based on Small Organic Dyes and Nanofiber Platforms[J]. ACS Appl Mater Interfaces, 2016,8(34):22246-22252. doi: 10.1021/acsami.6b07138

    25. [25]

      Zhou X, Zeng Y, Chen L. A Fluorescent Sensor for Dual-Channel Discrimination Between Phosgene and a Nerve-Gas Mimic[J]. Angew Chem Int Ed, 2016,55(15):4729-4733. doi: 10.1002/anie.201601346

    26. [26]

      Xia H C, Xu X H, Song Q H. Fluorescent Chemosensor for Selective Detection of Phosgene in Solutions and in Gas Phase[J]. ACS Sens, 2017,2(1):178-182. doi: 10.1021/acssensors.6b00723

    27. [27]

      Wang S L, Zhong L, Song Q H. A Ratiometric Fluorescent Chemosensor for Selective and Visual Detection of Phosgene in Solutions and in Gas Phase[J]. Chem Commun, 2017,53(9):1530-1533. doi: 10.1039/C6CC09361B

    28. [28]

      Xia H C, Xu X H, Song Q H. BODIPY-based Fluorescent Sensor for the Recognization of Phosgene in Solutions and in Gas Phase[J]. Anal Chem, 2017,89(7):4192-4197. doi: 10.1021/acs.analchem.7b00203

    29. [29]

      Kundu P, Hwang K C. Rational Design of Fluorescent Phosgene Sensors[J]. Anal Chem, 2012,84(10):4594-4597. doi: 10.1021/ac300737g

    30. [30]

      Xuan W, Cao Y, Zhou J. A FRET-based Ratiometric Fluorescent and Colorimetric Probe for the Facile Detection of Organophosphonate Nerve Agent Mimic DCP[J]. Chem Commun, 2013,49(89):10474-10476. doi: 10.1039/c3cc46095a

    31. [31]

      Jang Y J, Muralea D P, Churchill D G. Novel Reversible and Selective Nerve Agent Simulant Detection in Conjunction with Superoxide "Turn-On" Probing[J]. Analyst, 2014,139(7):1614-1617. doi: 10.1039/c3an02267f

    32. [32]

      Barba-Bon A, Costero A M, Gil S. Selective Chromo-Fluorogenic Detection of DFP(a Sarin and Soman mimic) and DCNP(a Tabun Mimic) with a Unique Probe Based on a Boron Dipyrromethene(BODIPY) Dye[J]. Org Biomol Chem, 2014,12(43):8745-8751. doi: 10.1039/C4OB01299B

    33. [33]

      Singh V V, Kaufmann K, Orozco J. Micromotor-Based On-Off Fluorescence Detection of Sarin and Soman Simulants[J]. Chem Commun, 2015,51(56):11190-11193. doi: 10.1039/C5CC04120A

    34. [34]

      Wu X, Wu Z, Han S. Chromogenic and Fluorogenic Detection of a Nerve Agent Simulant with a Rhodamine-Deoxylactam Based Sensor[J]. Chem Commun, 2011,47(41):11468-11470. doi: 10.1039/c1cc15250e

    35. [35]

      Wu W, Dong J, Wang X. Fluorogenic and Chromogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP[J]. Analyst, 2012,137(14):3224-3226. doi: 10.1039/c2an35428d

    36. [36]

      Barba-Bon A, Costero A M, Gil S. Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes[J]. Chem Eur J, 2014,20(21):6339-6347. doi: 10.1002/chem.201304475

    37. [37]

      Hu X X, Su Y T, Ma Y W. A Near Infrared Colorimetric and Fluorometric Probe for Organophosphorus Nerve Agent Mimics by Intramolecular Amidation[J]. Chem Commun, 2015,51(82):15118-15121. doi: 10.1039/C5CC04630K

    38. [38]

      Jang Y J, Mulay S V, Kim Y. Nerve Agent Simulant Diethyl Chlorophosphate Detection Using a Cyclization Reaction Approach with High Stokes Shift System[J]. New J Chem, 2017,41(4):1653-1658. doi: 10.1039/C6NJ03712G

    39. [39]

      Lee H, Kim H J. Novel Fluorescent Probe for the Selective Detection of Organophosphorous Nerve Agents Through a Cascade Reaction from Oxime to Nitrile via Isoxazole[J]. Tetrahedron, 2014,70(18):2966-2970. doi: 10.1016/j.tet.2014.03.026

    40. [40]

      Jang Y J, Tsay O G, Murale D P. Novel and Selective Detection of Tabun Mimics[J]. Chem Commun, 2014,50(56):7531-7534. doi: 10.1039/C4CC02689F

    41. [41]

      Kim Y, Jang Y J, Mulay S V. Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution[J]. Chem Eur J, 2017,23(32):7785-7790. doi: 10.1002/chem.v23.32

    42. [42]

      Kim Y, Jang Y J, Lee D. Real Nerve Agent Study Assessing Pyridyl Reactivity:Selective Fluorogenic and Colorimetric Detection of Soman and Simulant[J]. Sens Actuators B, 2017,238:145-149. doi: 10.1016/j.snb.2016.07.056

    43. [43]

      Huang S, Wu Y, Zeng F. Handy Ratiometric Detection of Gaseous Nerve Agents with AIE-Fluorophore-Based Solid Test Strips[J]. J Mater Chem C, 2016,4(42):10105-10110. doi: 10.1039/C6TC03116A

    44. [44]

      Cai Y C, Li C, Song Q H. Fluorescent Chemosensors with Varying Degrees of Intramolecular Charge Transfer for Detection of a Nerve Agent Mimic in Solutions and in Vapor[J]. ACS Sens, 2017,2(6):834-841. doi: 10.1021/acssensors.7b00205

    45. [45]

      So H S, Angupillai S, Son Y A. Prompt Liquid-Phase Visual Detection and Low-Cost Vapor-Phase Detection of DCP, a Chemical Warfare Agent Mimic[J]. Sens Actuators B, 2016,235:447-456. doi: 10.1016/j.snb.2016.05.106

    46. [46]

      Mahapatra A K, Maiti K, Manna S K. A Cyclization-Induced Emission Enhancement(CIEE)-Based Ratiometric Fluorogenic and Chromogenic Probe for the Facile Detection of a Nerve Agent Simulant DCP[J]. Chem Commun, 2015,51(47):9729-9732. doi: 10.1039/C5CC02991K

    47. [47]

      Goswami S, Dasa S, Aicha K. Fluorescent Chemodosimeter Based on Spirobenzopyran for Organophosphorus Nerve Agent Mimics(DCP)[J]. RSC Adv, 2015,5(37):28996-29001. doi: 10.1039/C5RA01216C

    48. [48]

      Ali S S, Gangopadhyay A, Maiti K. A Chromogenic and Ratiometric Fluorogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP Based on a Hybrid Hydroxynaphthalene-Hemicyanine Dye[J]. Org Biomol Chem, 2017,15(28):5959-5967. doi: 10.1039/C7OB01252G

    49. [49]

      Kumar V, Rana H. Chromogenic and Fluorogenic Detection and Discrimination of Nerve Agents Tabun and Vx[J]. Chem Commun, 2015,51(92):16490-16493. doi: 10.1039/C5CC06580A

    50. [50]

      Sun X, Reuther J F, Phillips S T. Coupling Activity-Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents[J]. Chem Eur J, 2017,23(16):3903-3909. doi: 10.1002/chem.201604474

    51. [51]

      Sun X, Dahlhauser S D, Anslyn E V. New Autoinductive Cascade for the Optical Sensing of Fluoride:Application in the Detection of Phosphoryl Fluoride Nerve Agents[J]. J Am Chem Soc, 2017,139(13):4635-4638. doi: 10.1021/jacs.7b01008

    52. [52]

      Sun X, Anslyn E V. An Auto-Inductive Cascade for the Optical Sensing of Thiols in Aqueous Media:Application in the Detection of a VX Nerve Agent Mimic[J]. Angew Chem Int Ed, 2017,56(32):9522-9526. doi: 10.1002/anie.v56.32

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    10. [10]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(41)
  • Abstract views(7654)
  • HTML views(656)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return