Citation: LI Chong, CHEN Ying, XIE Nuohua, LIU Junxia, FAN Cheng, ZHOU Qiyuan, ZHU Mingqiang. Research Progress on Hydrophilic Photoswitchable Fluorescent Diarylethenes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1379-1402. doi: 10.11944/j.issn.1000-0518.2017.12.170304 shu

Research Progress on Hydrophilic Photoswitchable Fluorescent Diarylethenes

  • Corresponding author: LI Chong, chongli@hust.edu.cn ZHU Mingqiang, mqzhu@hust.edu.cn
  • Received Date: 29 August 2017
    Revised Date: 18 September 2017
    Accepted Date: 30 September 2017

    Fund Project: the Fundamental Research Funds for the Central Universities 2016YXMS029the National Basic Research Program of China 2013CB922104the National Natural Science Foundation of China 51673077the National Basic Research Program of China 2015CB755602Supported by the National Natural Science Foundation of China(No.51673077, No.51603078, No.21474034), the National Basic Research Program of China(No.2013CB922104, No.2015CB755602), the Fundamental Research Funds for the Central Universities(HUST:2016YXMS029), Director Fund of WNLOthe National Natural Science Foundation of China 51603078the National Natural Science Foundation of China 21474034

Figures(23)

  • Photoswitchable fluorescent dithienylethene is one kind of the most typical diarylethene structures. Hydrophilization of photoswitchable fluorescent dithienylethene has become one of the key factors to come true its practical applications as a fluorescence photoswitching probes. Owing to its excellent fatigue resistance and unique thermal bistability, it has been widely studied and applied. This paper reviews the development history of photoswitchable fluorescent thienylethenes, summarizes the mechanism of fluorescence photoswitching mechanisms, describes some important achievements on the foundational research about novel structures and improved properties of photoswitchable fluorescent thienylethene in recent years. We also focus on the systemic overview of the applications of photoswitchable fluorescent dithienylethylene in optical memory, non-destructive read-out, single-molecule fluorescence imaging, bio-imaging, all-optical transistors. In the end, the challenges encountered during the study of diarylethenes are analyzed. It is believable that photoswithcable fluorescent polymers based on dithienylethene is the research direction in the future. Moreover, the promising application of diarylethenes in super-resolution imaging is prospected.
  • 加载中
    1. [1]

      Irie M, Mohri M. Thermally Irreversible Photochromic Systems. Reversible Photocyclization of Diarylethene Derivatives[J]. J Org Chem, 1988,53(4):803-808. doi: 10.1021/jo00239a022

    2. [2]

      LI Chong. The Synthesis, Properties and Applications of Photoswitchable Fluorescent Diarylethene[D]. Wuhan:Huazhong University of Science & Technology, 2016(in Chinese). 

    3. [3]

      Wigglesworth T J, Sud D, Norsten T B. Chiral Discrimination in Photochromic Helicenes[J]. J Am Chem Soc, 2005,127(20):7272-7273. doi: 10.1021/ja050190j

    4. [4]

      Irie M. Photochromism of Diarylethene Single Molecules and Single Crystals[J]. Photochem Photobiol Sci, 2010,9(12):1535-1542. doi: 10.1039/c0pp00251h

    5. [5]

      Toriumi A, Kawata S, Gu M. Reflection Confocal Microscope Readout System for Three-Dimensional Photochromic Optical Data Storage[J]. Opt Lett, 1998,23(24):1924-1926. doi: 10.1364/OL.23.001924

    6. [6]

      Uchida K, Saito M, Murakami A. Non-Destructive Readout of the Photochromic Reactions of Diarylethene Derivatives Using Infrared Light[J]. Adv Mater, 2003,15(2):121-125. doi: 10.1002/(ISSN)1521-4095

    7. [7]

      Stellacci F, Bertarelli C, Toscano F. Diarylethene-Based Photochromic Rewritable Optical Memories:On the Possibility of Reading in the Mid-infrared[J]. Chem Phys Lett, 1999,302(5/6):563-570.

    8. [8]

      Matsuda K. Photochromic Diarylethene as an Information Processing Unit:Magnetic and Electric Switching[J]. Pure Appl Chem, 2008,80(3):555-561.

    9. [9]

      Barone V, Cacelli I, Ferretti A. Electron Transport Properties of Diarylethene Photoswitches by a Simplified NEGF-DFT Approach[J]. J Phys Chem B, 2014,118(18):4976-4981. doi: 10.1021/jp502065c

    10. [10]

      Kawai T, Koshido T, Yoshino K. Optical and Dielectric Properties of Photochromic Dye in Amorphous State and Its Application[J]. Appl Phys Lett, 1995,67(6):795-797. doi: 10.1063/1.115470

    11. [11]

      Irie M, Ishida H, Tsujioka T. Rewritable Near-Field Optical Recording on Photochromic Perinaphthothioindigo Thin Films:Readout by Fluorescence[J]. Jpn J Appl Phys, 1999,38(10R)6114.

    12. [12]

      Tong Z, Pu S, Xiao Q. Synthesis and Photochromism of a Novel Water-Soluble Diarylethene with Glucosyltriazolyl Groups[J]. Tetrahedron Lett, 2013,54(6):474-477. doi: 10.1016/j.tetlet.2012.11.056

    13. [13]

      Zhang J, Zou Q, Tian H. Photochromic Materials:More Than Meets the Eye[J]. Adv Mater, 2013,25(3):378-399. doi: 10.1002/adma.201201521

    14. [14]

      Fukaminato T. Single-Molecule Fluorescence Photoswitching:Design and Synthesis of Photoswitchable Fluorescent Molecules[J]. J Photochem Photobiol, C, 2011,12(3):177-208. doi: 10.1016/j.jphotochemrev.2011.08.006

    15. [15]

      LI Chong, LIU Junxia, XIE Nuohua. Research Progress on Photoswitchable Fluorescent Dithienylethenes[J]. Polym Bull, 2015(9):142-162.  

    16. [16]

      Zou Y, Yi T, Xiao S. Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells[J]. J Am Chem Soc, 2008,130(47):15750-15751. doi: 10.1021/ja8043163

    17. [17]

      Matsuda K, Shinkai Y, Yamaguchi T. Very High Cyclization Quantum Yields of Diarylethene Having Two N-Methylpyridinium Ions[J]. Chem Lett, 2003,32(12):1178-1179. doi: 10.1246/cl.2003.1178

    18. [18]

      Hirose T, Irie M, Matsuda K. Temperature-Light Dual Control of Clouding Behavior of an Oligo(ethylene glycol)-Diarylethene Hybrid System[J]. Adv Mater, 2008,20(11):2137-2141. doi: 10.1002/(ISSN)1521-4095

    19. [19]

      Saitoh M, Fukaminato T, Irie M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand[J]. J Photochem Photobiol A:Chem, 2009,207(1):28-31. doi: 10.1016/j.jphotochem.2009.03.010

    20. [20]

      Xiao S, Zou Y, Yu M. A photochromic Fluorescent Switch in an Organogel System with Non-destructive Readout Ability[J]. Chem Commun, 2007(45):4758-4760. doi: 10.1039/b709409d

    21. [21]

      Liu J X, Xin B, Li C. PEGylated Perylenemonoimide-Dithienylethene for Super-Resolution Imaging of Liposomes[J]. ACS Appl Mater Interfaces, 2017,9(12):10338-10343. doi: 10.1021/acsami.6b15076

    22. [22]

      Li C, Yan H, Zhao L X. A Trident Dithienylethene-Perylenemonoimide Dyad with Super Fluorescence Switching Speed and Ratio[J]. Nat Commun, 2014,55709. doi: 10.1038/ncomms6709

    23. [23]

      Cheng H, Ma P, Wang Y. Photoswitchable and Water-Soluble Fluorescent Nano-Aggregates Based on a Diarylethene Dansyl Dyad and Liposome[J]. Chem-Asian J, 2017,12(2):248-253. doi: 10.1002/asia.v12.2

    24. [24]

      Feng G, Ding D, Li K. Reversible Photoswitching Conjugated Polymer Nanoparticles for Cell and ex Vivo Tumor Imaging[J]. Nanoscale, 2014,6(8):4141-4147. doi: 10.1039/C3NR06663K

    25. [25]

      Balter M, Li S, Morimoto M. Emission Color Tuning and White-Light Generation Based on Photochromic Control of Energy Transfer Reactions in Polymer Micelles[J]. Chem Sci, 2016,7(9):5867-5871. doi: 10.1039/C6SC01623E

    26. [26]

      Min Y K, Ji G C, Ahn K H. Superparamagnetic Iron Oxide Nanoparticles with Photoswitchable Fluorescence[J]. Chem Commun, 2008(38):4622-4624. doi: 10.1039/b807462c

    27. [27]

      Wu T, Wilson D, Branda N R. Fluorescent Quenching of Lanthanide-Doped Upconverting Nanoparticles by Photoresponsive Polymer Shells[J]. Chem Mater, 2014,26(14):4313-4320. doi: 10.1021/cm5021405

    28. [28]

      Díaz S A, Gillanders F, Susumu K. Water-Soluble, Thermostable, Photomodulated Color-Switching Quantum Dots[J]. Chem-Eur J, 2017,23(2):263-267. doi: 10.1002/chem.v23.2

    29. [29]

      Li C, Hu Z, Aldred M P. Water-Soluble Polymeric Photoswitching Dyads Impart Super-Resolution Lysosome Highlighters[J]. Macromolecules, 2014,47(24):8594-8601. doi: 10.1021/ma501505w

    30. [30]

      Liu J X, Xin B, Li C. Photoswitchable Polyfluorophores Based on Perylenemonoimide-Dithienylethene Conjugates as Super-Resolution MitoTrackers[J]. J Mater Chem C, 2017,5(36):9339-9344. doi: 10.1039/C7TC02526B

    31. [31]

      Wu T, Boyer J C, Barker M. A "Plug-and-Play" Method to Prepare Water-Soluble Photoresponsive Encapsulated Upconverting Nanoparticles Containing Hydrophobic Molecular Switches[J]. Chem Mater, 2013,25(12):2495-2502. doi: 10.1021/cm400802d

    32. [32]

      Massaad J, Coppel Y, Sliwa M. Photocontrol of Luminescent Inorganic Nanocrystals via an Organic Molecular Switch[J]. Phys Chem Chem Phys, 2014,16(41):22775-22783. doi: 10.1039/C4CP03537B

    33. [33]

      Díaz S A, Giordano L, Azc rate J C. Quantum Dots as Templates for Self-Assembly of Photoswitchable Polymers:Small, Dual-Color Nanoparticles Capable of Facile Photomodulation[J]. J Am Chem Soc, 2013,135(8):3208-3217. doi: 10.1021/ja3117813

    34. [34]

      Díaz S A, Men ndez G O, Etchehon M H. Photoswitchable Water-Soluble Quantum Dots:pcFRET Based on Amphiphilic Photochromic Polymer Coating[J]. ACS Nano, 2011,5(4):2795-2805. doi: 10.1021/nn103243c

    35. [35]

      Díaz S A, Giordano L, Jovin T M. Modulation of a Photoswitchable Dual-Color Quantum Dot Containing a Photochromic FRET Acceptor and an Internal Standard[J]. Nano Lett, 2012,12(7):3537-3544. doi: 10.1021/nl301093s

    36. [36]

      Takagi Y, Kunishi T, Katayama T. Photoswitchable Fluorescent Diarylethene Derivatives with Short Alkyl Chain Substituents[J]. Photochem Photobiol Sci, 2012,11(11):1661-1665. doi: 10.1039/c2pp25078k

    37. [37]

      Uno K, Niikura H, Morimoto M. In Situ Preparation of Highly Fluorescent Dyes upon Photoirradiation[J]. J Am Chem Soc, 2011,133(34):13558-13564. doi: 10.1021/ja204583e

    38. [38]

      Mao Y, Yi T. Fluorescent Switchable Diarylethene Derivatives and Their Application to the Imaging of Living Cells. In Photon-Working Switches[M]. Yokoyama Y, Nakatani K, Eds. Japan:Tokyo:Springer, 2017:133-152.

    39. [39]

      Lv G, Cui B, Lan H. Diarylethene Based Fluorescent Switchable Probes for the Detection of Amyloid-β Pathology in Alzheimer's Disease[J]. Chem Commun, 2015,51(1):125-128. doi: 10.1039/C4CC07656G

    40. [40]

      Cao K, Farahi M, Dakanali M. Aminonaphthalene 2-Cyanoacrylate(ANCA) Probes Fluorescently Discriminate Between Amyloid-β and Prion Plaques in Brain[J]. J Am Chem Soc, 2012,134(42):17338-17341. doi: 10.1021/ja3063698

    41. [41]

      Liu K, Wen Y, Shi T. DNA Gated Photochromism and Fluorescent Switch in a Thiazole Orange Modified Diarylethene[J]. Chem Commun, 2014,50(65):9141-9144. doi: 10.1039/C4CC02783C

    42. [42]

      Biancardi A, Biver T, Marini A. Thiazole Orange(TO) as a Light-Switch Probe:A Combined Quantum-Mechanical and Spectroscopic Study[J]. Phys Chem Chem Phys, 2011,13(27):12595-12602. doi: 10.1039/c1cp20812h

    43. [43]

      Irie M, Miyatake O, Uchida K. Blocked Photochromism of Diarylethenes[J]. J Am Chem Soc, 1992,114(22):8715-8716. doi: 10.1021/ja00048a063

    44. [44]

      Mohanty J, Thakur N, Dutta Choudhury S. Recognition-Mediated Light-Up of Thiazole Orange with Cucurbit[J]. J Phys Chem B, 2012,116(1):130-135. doi: 10.1021/jp210432t

    45. [45]

      Xu Y, Guo M, Li X. Formation of Linear Supramolecular Polymers that is Based on Host-Guest Assembly in Water[J]. Chem Commun, 2011,47(31):8883-8885. doi: 10.1039/c1cc12599k

    46. [46]

      Mao Y, Liu K, Lv G. CB[8] Gated Photochromism of a Diarylethene Derivative Containing Thiazole Orange Groups[J]. Chem Commun, 2015,51(30):6667-6670. doi: 10.1039/C5CC01390A

    47. [47]

      Hu H, Zhu M, Meng X. Optical Switching and Fluorescence Modulation Properties of Photochromic Dithienylethene Derivatives[J]. J Photochem Photobiol A:Chem, 2007,189(2):307-313.

    48. [48]

      Jing S, Zheng C, Pu S. A Highly Selective Ratiometric Fluorescent Chemosensor for Hg2+ Based on a New Diarylethene with a Stilbene-Linked Terpyridine Unit[J]. Dyes Pigm, 2014,107:38-44. doi: 10.1016/j.dyepig.2014.03.023

    49. [49]

      Yokel R A. Aluminum Chelation Principles and Recent Advances[J]. Coord Chem Rev, 2002,228(2):97-113. doi: 10.1016/S0010-8545(02)00078-4

    50. [50]

      Altschuler E. Aluminum-Containing Antacids as a Cause of Idiopathic Parkinson's Disease[J]. Med Hypotheses, 1999,53(1):22-23. doi: 10.1054/mehy.1997.0701

    51. [51]

      Li S Y, Zhang D B, Wang J Y. A Novel Diarylethene-Hydrazinopyridine-Based Probe for Fluorescent Detection of Aluminum Ion and Naked-Eye Detection of Hydroxide Ion[J]. Sens Actuators B:Chem, 2017,245:263-272. doi: 10.1016/j.snb.2017.01.149

    52. [52]

      Wu J, Sheng R, Liu W. Fluorescent Sensors Based on Controllable Conformational Change for Discrimination of Zn2+ over Cd2+[J]. Tetrahedron, 2012,68(27/28):5458-5463.

    53. [53]

      Pu S, Zhang C, Fan C. Multi-Controllable Properties of an Antipyrine-Based Diarylethene and Its High Selectivity for Recognition of Al3+[J]. Dyes Pigm, 2016,129:24-33. doi: 10.1016/j.dyepig.2016.02.001

    54. [54]

      Zhang C, Pu S, Sun Z. Highly Sensitive and Selective Fluorescent Sensor for Zinc Ion Based on a New Diarylethene with a Thiocarbamide Unit[J]. J Phys Chem B, 2015,119(13):4673-4682. doi: 10.1021/acs.jpcb.5b01390

    55. [55]

      Zhang X, Wang R, Fan C. A highly Selective Fluorescent Sensor for Cd2+ Based on a New Diarylethene with a 1, 8-Naphthyridine Unit[J]. Dyes Pigm, 2017,139:208-217. doi: 10.1016/j.dyepig.2016.12.023

    56. [56]

      Dong X, Wang R, Liu G. A Novel Sensitive Sensor for Cu2+ and Multi-Switch Based on a Diarylethene with a 2-(2'-Hydroxyphenyl)benzothiazole Unit[J]. Tetrahedron, 2016,72(22):2935-2942. doi: 10.1016/j.tet.2016.04.007

    57. [57]

      Li G, Ma L, Liu G. A Diarylethene-Based "On-Off-On" Fluorescence Sensor for the Sequential Recognition of Mercury and Cysteine[J]. RSC Adv, 2017,7(33):20591-20596. doi: 10.1039/C6RA27773J

    58. [58]

      Qu S, Zheng C, Liao G. A Fluorescent Chemosensor for Sn2+ and Cu2+ Based on a Carbazole-Containing Diarylethene[J]. RSC Adv, 2017,7(16):9833-9839. doi: 10.1039/C6RA27339D

    59. [59]

      Xue D, Zheng C, Fan C. A Colorimetric Fluorescent Sensor for Cr3+ Based on a Novel Diarylethene with a Naphthalimide-Rhodamine B Group[J]. J Photochem Photobiol A:Chem, 2015,303:59-66.

    60. [60]

      Stephens D J, Allan V J. Light Microscopy Techniques for Live Cell Imaging[J]. Science, 2003,300(5616):82-86. doi: 10.1126/science.1082160

    61. [61]

      Carreon J R, Stewart K M, Mahon K P. Cyanine Dye Conjugates as Probes for Live Cell Imaging[J]. Biorg Med Chem Lett, 2007,17(18):5182-5185. doi: 10.1016/j.bmcl.2007.06.097

    62. [62]

      Negre-Salvayre A, Aug N, Duval C. [5] Detection of Intracellular Reactive Oxygen Species in Cultured Cells Using Fluorescent Probes[J]. Methods Enzymol, 2002,352:62-71. doi: 10.1016/S0076-6879(02)52007-3

    63. [63]

      Zhu M Q, Zhu L, Han J J. Spiropyran-Based Photochromic Polymer Nanoparticles with Optically Switchable Luminescence[J]. J Am Chem Soc, 2006,128(13):4303-4309. doi: 10.1021/ja0567642

    64. [64]

      Wiedenmann J, Ivanchenko S, Oswald F. EosFP, a Fluorescent Marker Protein with UV-Inducible Green-to-Red Fluorescence Conversion[J]. Proc Natl Acad Sci USA, 2004,101(45):15905-15910. doi: 10.1073/pnas.0403668101

    65. [65]

      Zhang J, Campbell R E, Ting A Y. Creating New Fluorescent Probes for Cell Biology[J]. Nat Rev Mol Cell Biol, 2002,3(12):906-918. doi: 10.1038/nrm976

    66. [66]

      Zhu M-Q, Zhang G-F, Li C. Reversible Two-Photon Photoswitching and Two-Photon Imaging of Immunofunctionalized Nanoparticles Targeted to Cancer Cells[J]. J Am Chem Soc, 2011,133(2):365-372. doi: 10.1021/ja106895k

    67. [67]

      Soh N, Yoshida K, Nakajima H. A Fluorescent Photochromic Compound for Labeling Biomolecules[J]. Chem Commun, 2007(48):5206-5208. doi: 10.1039/b713663c

    68. [68]

      Piao X, Zou Y, Wu J. Multiresponsive Switchable Diarylethene and Its Application in Bioimaging[J]. Org Lett, 2009,11(17):3818-3821. doi: 10.1021/ol9014267

    69. [69]

      Jae Lee M, Ho Kang S. Photoswitchable Fluorescent Diarylethene in a Turn-On Mode for Live Cell Imaging[J]. Chem Commun, 2012,48(31):3745-3747. doi: 10.1039/c2cc30738c

    70. [70]

      Wang S, Li C P, Xu L. A Photochromic Fluorescent Probe for Hg2+ Based on Dithienylethene-Rhodamine B Dyad and Its Application in Live Cells Imaging[J]. Sci Adv Mater, 2017,9(3/4):533-540.

    71. [71]

      Al-Atar U, Fernandes R, Johnsen B. A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism[J]. J Am Chem Soc, 2009,131(44):15966-15967. doi: 10.1021/ja903070u

    72. [72]

      Huang B, Wang W, Bates M. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy[J]. Science, 2008,319](5864):810-813.

    73. [73]

      Heilemann M, Dedecker P, Hofkens J. Photoswitches:Key Molecules for Subdiffraction-Resolution Fluorescence Imaging and Molecular Quantification[J]. Laser Photonics Rev, 2009,3(1/2):180-202.

    74. [74]

      Tian Z, Wu W, Li A D Q. Photoswitchable Fluorescent Nanoparticles:Preparation, Properties and Applications[J]. Chemphyschem, 2009,10(15):2577-2591. doi: 10.1002/cphc.v10:15

    75. [75]

      Tian Z, Li A D Q, Hu D. Super-resolution Fluorescence Nanoscopy Applied to Imaging Core-Shell Photoswitching Nanoparticles and Their Self-Assemblies[J]. Chem Commun, 2011,47(4):1258-1260. doi: 10.1039/C0CC03217D

    76. [76]

      Hua Q X, Xin B, Xiong Z. Super-Resolution Imaging of Self-Assembly of Amphiphilic Photoswitchable Macrocycles[J]. Chem Commun, 2017,53(18):2669-2672. doi: 10.1039/C7CC00044H

    77. [77]

      Gong W L, Xiong Z J, Xin B. Twofold Photoswitching of NIR Fluorescence and EPR Based on the PMI-N-HABI for Optical Nanoimaging of Electrospun Polymer Nanowires[J]. J Mater Chem C, 2016,4(13):2498-2505. doi: 10.1039/C6TC00542J

    78. [78]

      Yan J, Zhao L X, Li C. Optical Nanoimaging for Block Copolymer Self-Assembly[J]. J Am Chem Soc, 2015,137(7):2436-2439. doi: 10.1021/ja512189a

    79. [79]

      Zhu M Q, Zhang G F, Hu Z. Reversible Fluorescence Switching of Spiropyran-Conjugated Biodegradable Nanoparticles for Super-Resolution Fluorescence Imaging[J]. Macromolecules, 2014,47(5):1543-1552. doi: 10.1021/ma5001157

    80. [80]

      Gong W, Xiong Z, Zhu M. Current Progress in Molecular Photoswitches Based on Hexaarylbiimidazole:Molecular Design and Synthesis, Properties and Application[J]. Imaging Sci Photochem, 2014,32(1):43-59.

    81. [81]

      Zhang G, Chen T, Li C. Spiropyran-Based Molecular Photoswitches[J]. Chinese J Org Chem, 2013,33(5):927-942. doi: 10.6023/cjoc201210006

    82. [82]

      Li C, Gong W L, Hu Z. Photoswitchable Aggregation-Induced Emission of a Dithienylethene-Tetraphenylethene Conjugate for Optical Memory and Super-Resolution Imaging[J]. RSC Adv, 2013,3(23):8967-8972. doi: 10.1039/c3ra40674a

    83. [83]

      Betzig E, Patterson G H, Sougrat R. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 2006,313(5793):1642-1645. doi: 10.1126/science.1127344

    84. [84]

      Rust M J, Bates M, Zhuang X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM)[J]. Nat Methods, 2006,3(10):793-796. doi: 10.1038/nmeth929

    85. [85]

      Yan J, Zhao L X, Li C. Optical Nanoimaging for Block Copolymer Self-Assembly[J]. J Am Chem Soc, 2015,137(7):2436-2439. doi: 10.1021/ja512189a

    86. [86]

      Gong W L, Yan J, Zhao L X. Single-Wavelength-Controlled in Situ Dynamic Super-Resolution Fluorescence Imaging for Block Copolymer Nanostructures via Blue-Light-Switchable FRAP[J]. Photochem Photobiol Sci, 2016,15(11):1433-1441. doi: 10.1039/C6PP00293E

    87. [87]

      Gong W L, Hu Z, Li C. Condensed State Fluorescence Switching of Hexaarylbiimidazole-Tetraphenylethene Conjugate for Super-Resolution Fluorescence Nanolocalization[J]. Front Optoelectron, 2013,6(4):458-467. doi: 10.1007/s12200-013-0330-1

    88. [88]

      Roubinet B, Weber M, Shojaei H. Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution[J]. J Am Chem Soc, 2017,139(19):6611-6620. doi: 10.1021/jacs.7b00274

    89. [89]

      Arai Y, Ito S, Fujita H. One-Colour Control of Activation, Excitation and Deactivation of a Fluorescent Diarylethene Derivative in Super-Resolution Microscopy[J]. Chem Commun, 2017,53(29):4066-4069. doi: 10.1039/C6CC10073B

    90. [90]

      Nevskyi O, Sysoiev D, Oppermann A. Nanoscopic Visualization of Soft Matter Using Fluorescent Diarylethene Photoswitches[J]. Angew Chem Int Ed, 2016,55(41):12698-12702. doi: 10.1002/anie.201606791

  • 加载中
    1. [1]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    2. [2]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(49)
  • Abstract views(10008)
  • HTML views(1662)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return