Citation: BU Lulu, WANG Qing, XIE Yongshu. Research Progress of Fluorescent Zinc Probes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1355-1369. doi: 10.11944/j.issn.1000-0518.2017.12.170302 shu

Research Progress of Fluorescent Zinc Probes

  • Corresponding author: XIE Yongshu, yshxie@ecust.edu.cn
  • Received Date: 29 August 2017
    Revised Date: 7 October 2017
    Accepted Date: 9 October 2017

    Fund Project: the Central University Basic Research Fellowship 222201714013the Shanghai Oriental Scholar Distinguished Professor Project GZ2016006the National Natural Science Fundation of China 21472047the Central University Basic Research Fellowship WK1616004Supported by the National Natural Science Fundation of China(No.21472047, No.21772041, No.21702062), the Shanghai Oriental Scholar Distinguished Professor Project(No.GZ2016006), the Central University Basic Research Fellowship(No.WK1616004, No.222201717003, No.222201714013)the National Natural Science Fundation of China 21702062the National Natural Science Fundation of China 21772041the Central University Basic Research Fellowship 222201717003

Figures(23)

  • It is of great importance to selectively detect and effectively monitor zinc ion because of its wide distribution in human cells and vital roles in human metabolism. Fluorescent probes have been extensively applied in zinc sensing because of the advantages of simple-design, easy-operation, high sensitivity and cell imaging capability. Fluorescent zinc probes are generally constructed based on the mechanisms of photo-induced electron transfer, intra-molecular charge transfer, fluorescence resonance energy transfer, aggregation-induced emission and chelation-enhanced fluorescence. Among these mechanisms, zinc probes constructed on chelation-enhanced fluorescence have the advantages of easy design and synthesis because its fluorophore can simultaneously act as the receptor. In this review, fluorescent zinc probes based on the aforementioned mechanisms, especially, chelation-enhanced fluorescence, reported in recent years are briefly summarized.
  • 加载中
    1. [1]

      Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat Rev Neurosci, 2005,6(6):449-462. doi: 10.1038/nrn1671

    2. [2]

      Que E L, Domaille D W, Chang C J. Metals in Neurobiology:Probing Their Chemistry and Biology with Molecular Imaging[J]. Chem Rev, 2008,108(5):1517-1549. doi: 10.1021/cr078203u

    3. [3]

      Assaf S Y, Chung S H. Release of Endogenous Zn2+ from Brain Tissue During Activity[J]. Nature, 1984,308(5961):734-736. doi: 10.1038/308734a0

    4. [4]

      Choi D W, Koh J Y. Zinc and Brain Injury[J]. Annu Rev Neurosci, 1998,21(21):347-375.

    5. [5]

      Wang L, Liu J H, Song Z M. Interaction of Multi-Walled Carbon Nanotubes and Zinc Ions Enhances Cytotoxicity of Zinc Ions[J]. Sci China Chem, 2016,59(7):910-917. doi: 10.1007/s11426-016-5591-2

    6. [6]

      Maret W, Jacob C, Vallee B L. Inhibitory Sites in Enzymes:Zinc Removal and Reactivation by Thionein[J]. Proc Natl Acad Sci USA, 1999,96(5):1936-1940. doi: 10.1073/pnas.96.5.1936

    7. [7]

      Falchuk K H. The Molecular Basis for the Role of Zinc in Developmental Biology[J]. Mol Cell Biochem, 1998,188(1):41-48.

    8. [8]

      Cao M J, Chen H Y, Chen D. Naphthalimide-Based Fluorescent Probe for Selectively and Specifically Detecting Glutathione in the Lysosomes of Living Cells[J]. Chem Commun, 2016,52(4):721-724. doi: 10.1039/C5CC08328A

    9. [9]

      Maeda H, Bando Y, Shimomura K. Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive π-Conjugated Molecules[J]. J Am Chem Soc, 2011,133(24):9266-9269. doi: 10.1021/ja203206g

    10. [10]

      Akamatsu M, Komatsu H, Mori T. Intracellular Imaging of Cesium Distribution in Arabidopsis Using Cesium Green[J]. ACS Appl Mater Interfaces, 2014,6(11):8208-8211. doi: 10.1021/am5009453

    11. [11]

      Mukherjee S, Salini P S, Srinivasan A. AIEE Phenomenon:Tetraaryl vs. Triaryl Pyrazoles[J]. Chem Commun, 2015,51(96):17148-17151. doi: 10.1039/C5CC05973A

    12. [12]

      Li J F, Yin C X, Huo F J. Development of Fluorescent Zinc Chemosensors Based on Various Fluorophores and Their Applications in Zinc Recognition[J]. Dyes Pigm, 2016,131:100-133. doi: 10.1016/j.dyepig.2016.03.043

    13. [13]

      Maeda H, Kusunose Y. Dipyrrolyldiketone Difluoroboron Complexes:Novel Anion Sensors with CHX Interactions[J]. Chem Eur J, 2005,11(19):5661-5666. doi: 10.1002/(ISSN)1521-3765

    14. [14]

      Akamatsu M, Mori T, Okamoto K. Detection of Ethanol in Alcoholic Beverages or Vapor Phase Using Fluorescent Molecules Embedded in a Nano Fibrous Polymer[J]. ACS Appl Mater Interfaces, 2015,7(11):6189-6194. doi: 10.1021/acsami.5b00289

    15. [15]

      Yin C X, Huo F J, Zhang J J. Thiol-Addition Reactions and Their Applications in Thiol Recognition[J]. Chem Soc Rev, 2013,42(14):6032-6059. doi: 10.1039/c3cs60055f

    16. [16]

      Zhang Y F, Chen H Y, Chen D. A Colorimetric and Ratiometric Fluorescent Probe for Mercury(Ⅱ) in Lysosome[J]. Sens Actuators, B, 2016,224:907-914. doi: 10.1016/j.snb.2015.11.018

    17. [17]

      Sreedevi K C G, Thomas A P, Aparna K H. Photoenolization via Excited State Double Proton Transfer Induces "Turn On" Fluorescence in Diformyl Diaryl Dipyrromethane[J]. Chem Commun, 2014,50(63):8667-8669. doi: 10.1039/C4CC03668A

    18. [18]

      Liu Y, Yu D H, Ding S S. Rapid and Ratiometric Fluorescent Detection of Cysteine with High Selectivity and Sensitivity by a Simple and Readily Available Probe[J]. ACS Appl Mater Interfaces, 2014,6(20):17543-17550. doi: 10.1021/am505501d

    19. [19]

      Kumar K, Verma T, Mukherjee R. Raman and Infra-Red Microspectroscopy:Towards Quantitative Evaluation for Clinical Research by Ratiometric Analysis[J]. Chem Soc Rev, 2016,45:1879-1900. doi: 10.1039/C5CS00540J

    20. [20]

      Yu H O, Xiao Y, Qian X H. Convenient and Efficient FRET Platform Featuring a Rigid Biophenyl Spacer Between Rhodamine and BODIPY:Transformation of "Turn-On" Sensors into Ratiometric Ones with Dual Emission[J]. Chem Eur J, 2011,17(11):3179-3191. doi: 10.1002/chem.v17.11

    21. [21]

      Yu M X, Shi M, Chen Z G. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging[J]. Chem Eur J, 2008,14(23):6892-6900. doi: 10.1002/chem.v14:23

    22. [22]

      Wu Y K, Peng X J, Guo B C. Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(Ⅱ) in Living Cells[J]. Org Biomol Chem, 2005,3(8):1387-1392. doi: 10.1039/b501795e

    23. [23]

      Nan Q, Rong P, Jiang Y B. New Highly Selective Turn-On Fluorescence Receptor for the Detection of Copper(Ⅱ)[J]. Spectrochim Acta A, 2017,174(5):307-315.

    24. [24]

      Xu Z C, Yoon J, Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev, 2010,39(6):1996-2006. doi: 10.1039/b916287a

    25. [25]

      Chen Y C, Bai Y, Han Z. Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem Soc Rev, 2015,44(14):4517-4546. doi: 10.1039/C5CS00005J

    26. [26]

      Ding Y B, Tamg Y Y, Zhu W H. Fluorescent and Colorimetric Ion Probes Based on Conjugated Oligopyrroles[J]. Chem Soc Rev, 2015,44(5):1101-1112. doi: 10.1039/C4CS00436A

    27. [27]

      Li J, Yim D, Jang W D. Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers[J]. Chem Soc Rev, 2016,46(9):2437-2650.

    28. [28]

      Ding Y B, Zhu W H, Xie Y S. Development of Ion Chemosensors Based on Porphyrin Analogues[J]. Chem Rev, 2017,177(4):2203-2256.

    29. [29]

      Jiang P J, Guo Z J. Fluorescent Detection of Zinc in Biological Systems:Recent Development on the Design of Chemosensors and Biosensors[J]. Coord Chem Rev, 2004,248(1/2):205-229.

    30. [30]

      Koike T, Watanabe T, Aoki S. A Novel Biomimetic Zinc(Ⅱ)-Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1, 4, 7, 10-Tetraazacyclododecane (Cyclen)[J]. J Am Chem Soc, 1996,118(50):12696-12703. doi: 10.1021/ja962527a

    31. [31]

      WANG Zuohui, WANG Shumin. Research Advance on the Fluorescent Probe of Zn2+[J]. Guangzhou Chem Ind, 2013,41(22).  

    32. [32]

      de Silva P, de Silva S A. Fluorescent Signalling Crown Ethers; 'Switching On' of Fluorescence by Alkali Metal Ion Recognition and Binding in Situ[J]. J Chem Soc, Chem Commun, 1986,1709(23):1709-1710.

    33. [33]

      Tomat E, Nolan E M, Jaworski J. Organelle-Specific Zinc Detection Using Zinpyr-Labeled Fusion Proteins in Live Cells[J]. J Am Chem Soc, 2008,130(47):15776-15777. doi: 10.1021/ja806634e

    34. [34]

      Zhang X A, Hayes D, Smith S J. New Strategy for Quantifying Biological Zinc by a Modified Zinpyr Fluorescence Sensor[J]. J Am Chem Soc, 2008,130(47):15788-15789. doi: 10.1021/ja807156b

    35. [35]

      Wong B A, Friedle S, Lippard S J. Solution and Fluorescence Properties of Symmetric Dipicolylamine-Containing Dichlorofluorescein-Based Zn2+ Sensors[J]. J Am Chem Soc, 2009,131(20):7142-7152. doi: 10.1021/ja900980u

    36. [36]

      Tomat E, Lippard S J. Ratiometric and Intensity-Based Zinc Sensors Built on Rhodol and Rhodamine Platforms[J]. Inorg Chem, 2010,49(20):9113-9115. doi: 10.1021/ic101513a

    37. [37]

      You Y M, Lee S, Kim T. Phosphorescent Sensor for Biological Mobile Zinc[J]. J Am Chem Soc, 2011,133(45):18328-18342. doi: 10.1021/ja207163r

    38. [38]

      Lin W, Buccella D, Lippard S J. Visualization of Peroxynitrite-Induced Changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin-Based Fluorescent Probes[J]. J Am Chem Soc, 2013,135(36):13512-13520. doi: 10.1021/ja4059487

    39. [39]

      Rivera-Fuentes P, Lippard S J. SpiroZin 1:A Reversible and pH-Insensitive, Reaction-Based, Red-Fluorescent Probe for Imaging Biological Mobile Zinc[J]. Chem Med Chem, 2014,9(6):1238-1243. doi: 10.1002/cmdc.201400014

    40. [40]

      Radford R J, Chyan W, Lippard S J. Peptide Targeting of Fluorescein-Based Sensors to Discrete Intracellular Locales[J]. Chem Sci, 2014,5(11):4512-4516. doi: 10.1039/C4SC01280A

    41. [41]

      Zastrow M L, Radford R J, Chyan W. Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues[J]. ACS Sens, 2016,1(1):32-39. doi: 10.1021/acssensors.5b00022

    42. [42]

      Walkup G K, Burdette S C, Lippard S J. A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J Am Chem Soc, 2000,122(23):5644-5645. doi: 10.1021/ja000868p

    43. [43]

      Burdette S C, Frederickson C J, Bu W M. ZP4, an Improved Nuronal Zn2+ Sensor of The Zinpyr Family[J]. J Am Chem Soc, 2003,125(7):1778-1787. doi: 10.1021/ja0287377

    44. [44]

      Nolan E M, Ryu J W, Jaworski J. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization[J]. J Am Chem Soc, 2006,128(48):15517-15528. doi: 10.1021/ja065759a

    45. [45]

      Buccella D, Horowitz J A, Lippard S J. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors[J]. J Am Chem Soc, 2011,133(11):4101-4114. doi: 10.1021/ja110907m

    46. [46]

      Xu Z C, Baek K H, Kim H N. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor[J]. J Am Chem Soc, 2010,132(2):601-610. doi: 10.1021/ja907334j

    47. [47]

      Hanaoka K, Kikuchi K, Kojima H. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications[J]. J Am Chem Soc, 2004,126(39):12470-12476. doi: 10.1021/ja0469333

    48. [48]

      Shyamal M, Mazumdar P, Maity S. Highly Selective Turn-On Fluorogenic Chemosensor for Robust Quantification of Zn(Ⅱ) Based on Aggregation Induced Emission Enhancement Feature[J]. ACS Sens, 2016,1(6):739-747. doi: 10.1021/acssensors.6b00289

    49. [49]

      Xue L, Liu C, Jiang H. A Ratiometric Fluorescent Sensor with a Large Stokes Shift for Imaging Zinc Ions in Living Cells[J]. Chem Commun, 2009,9(9):1061-1063.

    50. [50]

      Atilgan S, Ozdemir T, Akkaya E U. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Dstyryl-Bodipy Fluorophore[J]. Org Lett, 2008,10(18):4065-4067. doi: 10.1021/ol801554t

    51. [51]

      Lu X Y, Zhu W H, Xie Y S. Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effects on PET and ICT Channels[J]. Chem Eur J, 2010,16(28):8355-8364. doi: 10.1002/chem.v16:28

    52. [52]

      Sreenath K, Allen J R, Davidson M W. A FRET-Based Indicator for Imaging Mitochondrial Zinc Ions[J]. Chem Commun, 2011,47(42):11730-11732. doi: 10.1039/c1cc14580k

    53. [53]

      Woo H, You Y, Kim T. Fluorescence Ratiometric Zinc Sensors Based on Controlled Energy Transfer[J]. J Mater Chem, 2012,22(33):17100-17112. doi: 10.1039/c2jm33366j

    54. [54]

      Han Z X, Zhang X B, Li Z. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger[J]. Anal Chem, 2010,82(8):3108-3113. doi: 10.1021/ac100376a

    55. [55]

      Luo J D, Xie Z L, Lam J W Y. Aggregation-Induced Emission of 1-Methyl-1, 2, 3, 4, 5-Pentaphenylsilole[J]. Chem Commun, 2001,18(18):1740-1741.

    56. [56]

      Hong Y N, Chen S J, Leung C W T. Fluorogenic Zn(Ⅱ) and Chromogenic Fe(Ⅱ) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics[J]. ACS Appl Mater Interfaces, 2011,3(9):3411-3418. doi: 10.1021/am2009162

    57. [57]

      Gabr M T, Pigge F C. A Selective Fluorescent Sensor for Zn2+ Based on Aggregation-Induced Emission(AIE) Activity and Metal Chelating Ability of Bis(2-pyridyl)-Diphenylethylene[J]. Dalton Trans, 2016,45:14039-14043. doi: 10.1039/C6DT02657E

    58. [58]

      Sun F, Zhang G X, Zhang D Q. Aqueous Fluorescence Turn-On Sensor for Zn2+ with a Tetraphenylethylene Compound[J]. Org Lett, 2011,13(24):6378-6381. doi: 10.1021/ol2026735

    59. [59]

      Akkaya E U, Huston M E, Czarnik A W. Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution[J]. J Am Chem Soc, 1990,112:3590-3593. doi: 10.1021/ja00165a051

    60. [60]

      Cockrell G M, Zhang G, VanDerveer D G. Enhanced Metal Ion Selectivity of 2, 9-Di-(pyrid-2-yl)-1, 10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(Ⅱ)[J]. J Am Chem Soc, 2008,130(4):1420-1430. doi: 10.1021/ja077141m

    61. [61]

      Ding Y B, Xie Y S, Li X. Selective and Sensitive "Turn-On" Fluorescent Zn2+ Sensors Basedon Di-and Tripyrrins with Readily Modulated Emission Wavelengths[J]. Chem Commun, 2011,47(19):5431-5433. doi: 10.1039/c1cc11493j

    62. [62]

      Ding Y, Li X, Li T. α'-Monoacylated and α, α'-and α, β'-Diacylated Dipyrrins as Highly Sensitive Fluorescence "Turn-on" Zn2+ Probes[J]. J Org Chem, 2013,78(11)53285338.

    63. [63]

      Ding Y B, Li T, Zhu W H. Highly Selective Colorimetric Sensing of Cyanide Based on Formation of Dipyrrin Adducts[J]. Org Biomol Chem, 2012,10(21):4201-4207. doi: 10.1039/c2ob25297j

    64. [64]

      Xie Y S, Wei P C, Li X. Macrocycle Contraction and Expansion of a Dihydrosapphyrin Isomer[J]. J Am Chem Soc, 2013,135(51):19119-19122. doi: 10.1021/ja4112644

    65. [65]

      Lu C L, Xu Z C, Cui J N. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc[J]. J Org Chem, 2007,72(9):3554-3557. doi: 10.1021/jo070033y

    66. [66]

      Taki M, Wolford J L, O'Halloran T V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy[J]. J Am Chem Soc, 2004,126(3):712-713. doi: 10.1021/ja039073j

    67. [67]

      Nolan E M, Jaworski J, Okamoto K I. QZ1 and QZ2:Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(Ⅱ)[J]. J Am Chem Soc, 2005,127(48):16812-16823. doi: 10.1021/ja052184t

    68. [68]

      Dennis A E, Smith R C. "Turn-On" Fluorescent Sensor for the Selective Detection of Zinc Ion by a Sterically-Encumbered Bipyridyl-Based Receptor[J]. Chem Commun, 2007:4641-4643.

    69. [69]

      Wei X D, Wang Q, Tang W Q. Combination of Pyrrole and Pyridine for Constructing Selective and Sensitive Zn2+ Probes[J]. Dyes Pigm, 2017,140:320-327. doi: 10.1016/j.dyepig.2017.01.064

    70. [70]

      Manandhar E, Cragg P J, Wallace K J. Detection of Zn(Ⅱ) Ions by Fluorescent Pyrene-Derived Molecular Probes[J]. Supramol Chem, 2014,26:141-150. doi: 10.1080/10610278.2013.835050

    71. [71]

      Henary M M, Wu Y G, Fahrni C J. Zinc(Ⅱ)-Selective Ratiometric Fluorescent Sensors Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. Chem Eur J, 2004,10(12):3015-3025. doi: 10.1002/(ISSN)1521-3765

    72. [72]

      Chen W H, Xing Y, Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water[J]. Org Lett, 2011,13(6):1362-1365. doi: 10.1021/ol200054w

    73. [73]

      An M, Kim B Y, Seo H. Fluorescence Sensor for Sequential Detection of Zinc and Phosphate Ions[J]. Spectrochim Acta, Part A, 2016,169:87-94. doi: 10.1016/j.saa.2016.06.026

    74. [74]

      Li X, Li J, Dong X W. A Novel 3-Hydroxychromone Fluorescence Sensor for Intracellular Zn2+ and Its Application in the Recognition of Prostate Cancer Cells[J]. Sens Actuators, B, 2017,245:129-136. doi: 10.1016/j.snb.2017.01.170

    75. [75]

      Wu J S, Liu W M, Zhang X Q. Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on CN Isomerization[J]. Org Lett, 2007,9(1):33-36. doi: 10.1021/ol062518z

    76. [76]

      Bhattacharyya A, Ghosh S, Makhal S C. Hydrazine Bridged Coumarin-Pyrimidine Conjugate as a Highly Selectiveand Sensitive Zn2+ Sensor:Spectroscopic Unraveling of Sensing Mechanism with Practical Application[J]. Spectrochim Acta, Part A, 2017,183:306-311. doi: 10.1016/j.saa.2017.04.035

    77. [77]

      Guo Z Q, Kim G H, Shin I. A Cyanine-Based Fluorescent Probe for Detecting Endogenous Zinc Ions in Live Cells and Organisms[J]. Biomaterials, 2012,33(31):7818-7827. doi: 10.1016/j.biomaterials.2012.07.014

    78. [78]

      Zhu H, Fan J L, Peng X J. Ratiometric Fluorescence Imaging of Lysosomal Zn2+ Release Under Oxidative Stress in Neural Stem Cells[J]. Biomater Sci, 2014,2(1):89-97. doi: 10.1039/C3BM60186B

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(13)
  • Abstract views(611)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return