Citation: YAO Qianfang, CHENG Wenyu, YIN Meizhen. Host-Guest Supramolecular Fluorescent Probes Based on Macrocyclic Molecules[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1344-1354. doi: 10.11944/j.issn.1000-0518.2017.12.170301 shu

Host-Guest Supramolecular Fluorescent Probes Based on Macrocyclic Molecules

  • Corresponding author: YIN Meizhen, yinmz@mail.buct.edu.cn
  • Received Date: 29 August 2017
    Revised Date: 10 October 2017
    Accepted Date: 18 October 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21574009, No.51521062), the Beijing Natural Science Foundation(No.2142026), the Higher Education and High-quality and World-class Universities(No.PY201605)the Higher Education and High-quality and World-class Universities PY201605the National Natural Science Foundation of China 21574009the National Natural Science Foundation of China 51521062the Beijing Natural Science Foundation 2142026

Figures(9)

  • A number of detection techniques have been developed for the early detection of environmental pollutants and health hazard substances, the prevention and treatment of diseases. Among them, fluorescent probe technique as a convenient, sensitive and visual method has been widely applied. Macrocyclic supramolecular fluorescent probes have gradually attracted the attention of the scientific community. Macrocyclic molecules possess cavities with certain size, which could complex with specific groups to form supramolecules. Therefore, in the design of supramolecular fluorescent probes, the cavity advantage of macrocyclic molecules can be taken into consideration and utilized. In addition, due to easy functionalization, a variety of functional macrocyclic molecules have been synthesized, providing more choices for the design of macrocyclic supramolecular fluorescent probes. This paper reviews the design strategies of macrocyclic supramolecular fluorescent probes with focuses on the chemical composition and detection mechanisms of the probe, which might provide a systematic theoretical guidance for the design of supramolecular fluorescent probes.
  • 加载中
    1. [1]

      Liu K, Xu Z, Yin M. Perylenediimide-Cored Dendrimers and Their Bioimaging and Gene Delivery Applications[J]. Prog Polym Sci, 2015,46:25-54. doi: 10.1016/j.progpolymsci.2014.11.005

    2. [2]

      Chen M, Yin M. Design and Development of Fluorescent Nanostructures for Bioimaging[J]. Prog Polym Sci, 2014,39(2):365-395. doi: 10.1016/j.progpolymsci.2013.11.001

    3. [3]

      Sun M, Müllen K, Yin M. Water-Soluble Perylenediimides:Design Concepts and Biological Applications[J]. Chem Soc Rev, 2016,45(6):1513-1528. doi: 10.1039/C5CS00754B

    4. [4]

      Ji C, Zheng Y, Li J. An Amphiphilic Squarylium Indocyanine Dye for Long-Term Tracking of Lysosomes[J]. J Mater Chem B, 2015,3(38):7494-7498. doi: 10.1039/C5TB01738F

    5. [5]

      Li J, Guo K, Shen J. A Difunctional Squarylium Indocyanine Dye Distinguishes Dead Cells Through Diverse Staining of the Cell Nuclei/Membranes[J]. Small, 2014,10(7):1351-1360. doi: 10.1002/smll.v10.7

    6. [6]

      Xu Z, Guo K, Yu J. A Unique Perylene-Based DNA Intercalator:Localization in Cell Nuclei and Inhibition of Cancer Cells and Tumors[J]. Small, 2014,10(20):4087-4092.

    7. [7]

      He B, Chu Y, Yin M. Fluorescent Nanoparticle Delivered DsRNA Toward Genetic Control of Insect Pests[J]. Adv Mater, 2013,25(33):4580-4584. doi: 10.1002/adma.201301201

    8. [8]

      Zheng Y, You S, Ji C. Development of an Amino Acid-Functionalized Fluorescent Nanocarrier to Deliver a Toxin to Kill Insect Pests[J]. Adv Mater, 2016,28(7):1375-1380. doi: 10.1002/adma.v28.7

    9. [9]

      Li J, Hu Q, Yu X. A Novel Rhodamine-Benzimidazole Conjugate as a Highly Selective Turn-On Fluorescent Probe for Fe3+[J]. J Fluoresc, 2011,21(5):2005-2013. doi: 10.1007/s10895-011-0901-8

    10. [10]

      Xu H, Zhou S, Xiao L. Fabrication of a Nitrogen-Doped Graphene Quantum Dot from MOF-Derived Porous Carbon and Its Application for Highly Selective Fluorescence Detection of Fe3+[J]. J Mater Chem C, 2015,3(2):291-297. doi: 10.1039/C4TC01991A

    11. [11]

      Zhang S, Li J, Zeng M. Polymer Nanodots of Graphitic Carbon Nitride as Effective Fluorescent Probes for the Detection of Fe3+ and Cu2+ Ions[J]. Nanoscale, 2014,6(8):4157-4162. doi: 10.1039/c3nr06744k

    12. [12]

      Liu K, Xu Z, Yin M. A Multifunctional Perylenediimide Derivative(DTPDI) Can be Used as a Recyclable Specific Hg2+ Ion Sensor and an Efficient DNA Delivery Carrier[J]. J Mater Chem B, 2014,2(15):2093-2096. doi: 10.1039/C3TB21801E

    13. [13]

      Liu K, Hu Y, Xu Z. Fluorescent Sensor for Rapid Detection of Nucleophile and Convenient Comparison of Nucleophilicity[J]. Anal Chem, 2017,89(9):5131-5137. doi: 10.1021/acs.analchem.7b00714

    14. [14]

      Li J, Yim D, Jang W D. Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers[J]. Chem Soc Rev, 2017,46(9):2437-2458. doi: 10.1039/C6CS00619A

    15. [15]

      Zheng B, Wang F, Dong S. Supramolecular Polymers Constructed by Crown Ether-Based Molecular Recognition[J]. Chem Soc Rev, 2012,41(5):1621-1636. doi: 10.1039/C1CS15220C

    16. [16]

      Engeldinger E, Armspach D, Matt D. Capped Cyclodextrins[J]. Chem Rev, 2003,103(11):4147-4174. doi: 10.1021/cr030670y

    17. [17]

      Morohashi N, Narumi F, Iki N. Thiacalixarenes[J]. Chem Rev, 2006,106(12):5291-5316. doi: 10.1021/cr050565j

    18. [18]

      Isaacs L. Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers[J]. Acc Chem Res, 2014,47(7):2052-2062. doi: 10.1021/ar500075g

    19. [19]

      Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs[J]. Chem Rev, 2015,115(15):7240-7303. doi: 10.1021/cr5005315

    20. [20]

      Gokel G W, Leevy W M, Weber M E. Crown Ethers:Sensors for Ions and Molecular Scaffolds for Materials and Biological Models[J]. Chem Rev, 2004,104(5):2723-2750. doi: 10.1021/cr020080k

    21. [21]

      Cacciapaglia R, Mandolins L. Catalysis by Metal Ions in Reactions of Crown Ether Substrates[J]. Chem Soc Rev, 1993,22(4):221-231. doi: 10.1039/cs9932200221

    22. [22]

      Rekharsky M V, Inoue Y. Complexation Thermodynamics of Cyclodextrins[J]. Chem Rev, 1998,98(5):1875-1918. doi: 10.1021/cr970015o

    23. [23]

      Terao J. π-Conjugated Molecules Covered by Permethylated Cyclodextrins[J]. Chem Rec, 2011,11(5):269-283. doi: 10.1002/tcr.201100009

    24. [24]

      Gutsche C D. Calixarenes[J]. Acc Chem Res, 1983,16(5):161-170. doi: 10.1021/ar00089a003

    25. [25]

      Gutsche C D, Lin L G. Calixarenes 12:The Synthesis of Functionalized Calixarenes[J]. Tetrahedron, 1986,42(6):1633-1640. doi: 10.1016/S0040-4020(01)87580-3

    26. [26]

      Kumar R, Lee Y O, Bhalla V. Recent Developments of Thiacalixarene Based Molecular Motifs[J]. Chem Soc Rev, 2014,43(13):4824-4870. doi: 10.1039/c4cs00068d

    27. [27]

      Freeman W A, Mock W L, Shih N Y. Cucurbituril[J]. J Am Chem Soc, 1981,103(24):7367-7368. doi: 10.1021/ja00414a070

    28. [28]

      Lee J W, Samal S, Selvapalam N. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry[J]. Acc Chem Res, 2003,36(8):621-630. doi: 10.1021/ar020254k

    29. [29]

      Strutt N L, Forgan R S, Spruell J M. Monofunctionalized Pillar[J]. J Am Chem Soc, 2011,133(15):5668-5671. doi: 10.1021/ja111418j

    30. [30]

      Yao Y, Xue M, Chen J. An Amphiphilic Pillar[J]. J Am Chem Soc, 2012,134(38):15712-15715. doi: 10.1021/ja3076617

    31. [31]

      Yu G, Ma Y, Han C. A Sugar-Functionalized Amphiphilic Pillar[J]. J Am Chem Soc, 2013,135(28):10310-10313. doi: 10.1021/ja405237q

    32. [32]

      Mohandoss S, Stalin T. A New Fluorescent PET Sensor Probe for Co2+ Ion Detection:Computational, Logic Device and Living Cell Imaging Applications[J]. RSC Adv, 2017,7(27):16581-16593. doi: 10.1039/C6RA27497H

    33. [33]

      Mondal S, Purkayastha P. α-Cyclodextrin Functionalized Carbon Dots:Pronounced Photoinduced Electron Transfer by Aggregated Nanostructures[J]. J Phys Chem C, 2016,120(26):14365-14371. doi: 10.1021/acs.jpcc.6b03145

    34. [34]

      Xia D, Wang P, Shi B. Cu(Ⅱ) Ion-Responsive Self-Assembly Based on a Water-Soluble Pillar[J]. Org Lett, 2017,19(1):202-205. doi: 10.1021/acs.orglett.6b03486

    35. [35]

      Yao Y, Chi X, Zhou Y. A Bola-type Supra-Amphiphile Constructed from a Water-Soluble Pillar[J]. Chem Sci, 2014,5(7):2778-2782. doi: 10.1039/c4sc00585f

    36. [36]

      Müller B J, Borisov S M, Klimant I. Red-to NIR-Emitting, BODIPY-Based, K+-Selective Fluoroionophores and Sensing Materials[J]. Adv Funct Mater, 2016,26(42):7697-7707. doi: 10.1002/adfm.v26.42

    37. [37]

      Bhasikuttan A C, Pal H, Mohanty J. Cucurbit[n]uril Based Supramolecular Assemblies:Tunable Physico-Chemical Properties and Their Prospects[J]. Chem Commun, 2011,47(36):9959-9971. doi: 10.1039/c1cc12091c

    38. [38]

      Ghale G, Nau W M. Dynamically Analyte-Responsive Macrocyclic Host-Fluorophore Systems[J]. Acc Chem Res, 2014,47(7):2150-2159. doi: 10.1021/ar500116d

    39. [39]

      Wiskur S L, Ait-Haddou H, Lavigne J J. Teaching Old Indicators New Tricks[J]. Acc Chem Res, 2001,34(12):963-972. doi: 10.1021/ar9600796

    40. [40]

      Bakirci H, Nau W M. Fluorescence Regeneration as a Signaling Principle for Choline and Carnitine Binding:A Refined Supramolecular Sensor System Based on a Fluorescent Azoalkane[J]. Adv Funct Mater, 2006,16(2):237-242. doi: 10.1002/(ISSN)1616-3028

    41. [41]

      Guo D S, Uzunova V D, Su X. Operational Calixarene-Based Fluorescent Sensing Systems for Choline and Acetylcholine and Their Application to Enzymatic Reactions[J]. Chem Sci, 2011,2(9):1722-1734. doi: 10.1039/c1sc00231g

    42. [42]

      Inouye M, Hashimoto K, Isagawa K. Nondestructive Detection of Acetylcholine in Protic Media:Artificial-Signaling Acetylcholine Receptors[J]. J Am Chem Soc, 1994,116(12):5517-5518. doi: 10.1021/ja00091a085

    43. [43]

      Korbakov N, Timmerman P, Lidich N. Acetylcholine Detection at Micromolar Concentrations with the Use of an Artificial Receptor-Based Fluorescence Switch[J]. Langmuir, 2008,24(6):2580-2587. doi: 10.1021/la703010z

    44. [44]

      Hennig A, Bakirci H, Nau W M. Label-Free Continuous Enzyme Assays with Macrocycle-Fluorescent Dye Complexes[J]. Nat Meth, 2007,4(8):629-632. doi: 10.1038/nmeth1064

    45. [45]

      Daly B, Ling J, de Silva A P. Current Developments in Fluorescent PET(Photoinduced Electron Transfer) Sensors and Switches[J]. Chem Soc Rev, 2015,44(13):4203-4211. doi: 10.1039/C4CS00334A

    46. [46]

      De Silva A P, Moody T S, Wright G D. Fluorescent PET(Photoinduced Electron Transfer) Sensors as Potent Analytical Tools[J]. Analyst, 2009,134(12):2385-2393. doi: 10.1039/b912527m

    47. [47]

      Grätzel, M. Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C:Photochem Rev, 2003,4(2):145-153. doi: 10.1016/S1389-5567(03)00026-1

    48. [48]

      Jung H S, Verwilst P, Kim W Y. Fluorescent and Colorimetric Sensors for the Detection of Humidity or Water Content[J]. Chem Soc Rev, 2016,45(5):1242-1256. doi: 10.1039/C5CS00494B

    49. [49]

      Ast S, Müller H, Flehr R. High Na+ and K+ Induced Fluorescence Enhancement of a π-Conjugated Phenylaza-18-Crown-6-Triazol-Substituted Coumarin Fluoroionophore[J]. Chem Commun, 2011,47(16):4685-4687. doi: 10.1039/c0cc04370b

    50. [50]

      Inokuchi Y, Boyarkin O V, Kusaka R. UV and IR Spectroscopic Studies of Cold Alkali Metal Ion-Crown Ether Complexes in the Gas Phase[J]. J Am Chem Soc, 2011,133(31):12256-12263. doi: 10.1021/ja2046205

    51. [51]

      Jung H S, Kim H J, Vicens J. A New Fluorescent Chemosensor for F- Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. Tetrahedron Lett, 2009,50(9):983-987. doi: 10.1016/j.tetlet.2008.12.026

    52. [52]

      Mittapalli R R, Namashivaya S S R, Oshchepkov A S. Design of Anion-Selective PET Probes Based on Azacryptands:the Effect of pH on Binding and Fluorescence Properties[J]. Chem Commun, 2017,53(35):4822-4825. doi: 10.1039/C7CC01255A

    53. [53]

      Costa A I, Pinto H D, Ferreira L F V. Solid-State Sensory Properties of Calix-Poly(Phenylene Ethynylene)s Toward Nitroaromatic Explosives[J]. Sens Actuators B:Chemical, 2012,161(1):702-713. doi: 10.1016/j.snb.2011.11.017

    54. [54]

      Yao Q, Lv B, Ji C. Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar[5] arene[J]. ACS Appl Mater Interfaces, 2017. doi: 10.1021/acsami.7b12063

    55. [55]

      Dhenadhayalan N, Lee H L, Yadav K. Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells[J]. ACS Appl Mater Interfaces, 2016,8(36):23953-23962. doi: 10.1021/acsami.6b07789

    56. [56]

      De Silva A P, Gunaratne H Q N, Gunnlaugsson T. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem Rev, 1997,97(5):1515-1566. doi: 10.1021/cr960386p

    57. [57]

      Lodeiro C, Pina F. Luminescent and Chromogenic Molecular Probes Based on Polyamines and Related Compounds[J]. Coord Chem Rev, 2009,253(9):1353-1383.

    58. [58]

      Martinez-Manez R, Sancenón F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chem Rev, 2003,103(11):4419-4476. doi: 10.1021/cr010421e

    59. [59]

      Sapsford K E, Berti L, Medintz I L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J]. Angew Chem Int Ed, 2006,45(28):4562-4589. doi: 10.1002/(ISSN)1521-3773

    60. [60]

      Xu Z, Yoon J, Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev, 2010,39(6):1996-2006. doi: 10.1039/b916287a

    61. [61]

      Xu M, Wu S, Zeng F. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing[J]. Langmuir, 2009,26(6):4529-4534.

    62. [62]

      Kim J S, Lee S Y, Yoon J. Hyperbranched Calixarenes:Synthesis and Applications as Fluorescent Probes[J]. Chem Commun, 2009(32):4791-4802. doi: 10.1039/b900328b

    63. [63]

      Wu J, Liu W, Ge J. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev, 2011,40(7):3483-3495. doi: 10.1039/c0cs00224k

    64. [64]

      Sutariya P G, Modi N R, Pandya A. An ICT Based "Turn On/Off" Quinoline Armed Calix[J]. Analyst, 2012,137(23):5491-5494. doi: 10.1039/c2an36247c

    65. [65]

      Kandpal M, Bandela A K, Hinge V K. Fluorescence and Piezoresistive Cantilever Sensing of Trinitrotoluene by an Upper-Rim Tetrabenzimidazole Conjugate of Calix[J]. ACS Appl Mater Interfaces, 2013,5(24):13448-13456. doi: 10.1021/am404356v

    66. [66]

      Bandela A K, Bandaru S, Rao C P. A Fluorescent 1, 3-Diaminonaphthalimide Conjugate of Calix[J]. Chem-Eur J, 2015,21(38):13364-13374. doi: 10.1002/chem.201500787

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

Metrics
  • PDF Downloads(26)
  • Abstract views(4678)
  • HTML views(1164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return