Citation: CAO Jianfang, FAN Jiangli, GUO Yu, WU Hongmei. Density Functional Theory Research on the Optical Properties of Thiazole Orange Cyanine Dyes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1474-1480. doi: 10.11944/j.issn.1000-0518.2017.12.170156 shu

Density Functional Theory Research on the Optical Properties of Thiazole Orange Cyanine Dyes

  • Corresponding author: CAO Jianfang, caojf@lnut.edu.cn FAN Jiangli, fanjl@dlut.edu.cn
  • Received Date: 15 May 2017
    Revised Date: 7 June 2017
    Accepted Date: 28 June 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21606118, No.21601075), the Natural Science Foundation of Liaoning Province(No.2015020249), the Open Project Fund of State Key Laboratory of Fine Chemicals(No.KF1614)the Natural Science Foundation of Liaoning Province 2015020249the National Natural Science Foundation of China 21601075the National Natural Science Foundation of China 21606118the Open Project Fund of State Key Laboratory of Fine Chemicals KF1614

Figures(5)

  • 4-(Diethylamino)butyl substituted trimethylthiazole orange(DEAB-TO3) is essentially nonfluorescent in aqueous solution, which can be used to detect nucleic acids in cells. The spectroscopic properties of 4-(two ethyl amino) butyl substituted methyl thiazole orange(DEAB-TO1) and DEAB-TO3 were studied by density functional theory method. The geometry optimization of the ground state and the excited state reveal highly distorted configuration of the excited state. Spectral analysis and orbital analysis show that the first excited state is a dark state with twisted intermolecular charge transfer. The ground state and the excited state potential energy curves show that DEAB-TO1 and DEAB-TO3 have very low energy gap and rotational energy barrier. These results explain their low background fluorescence.
  • 加载中
    1. [1]

      Mishra A, Behera R, Behera P. Cyanines During the 1990s:A Review[J]. Chem Rev, 2000,100(6):1973-2012. doi: 10.1021/cr990402t

    2. [2]

      Kurutos A, Ryzhova O, Trusova V. Novel Asymmetric Monomethine Cyanine Dyes Derived from Sulfobetaine Benzothia-zolium Moiety as Potential Fluorescent Dyes for Non-Covalent Labeling of DNA[J]. Dyes Pigm, 2016,130:122-128. doi: 10.1016/j.dyepig.2016.03.021

    3. [3]

      Kaloyanova S, Trusova V, Gorbenko G. Synthesis and Fluorescence Characterization of Novel Asymmetric Cyanine Dyes for DNA Detection[J]. J Photochem Photobiol A, 2011,217(1):147-156. doi: 10.1016/j.jphotochem.2010.10.002

    4. [4]

      Davidson Y, Gunn B, Soper S. Spectroscopic and Binding Properties of Near-Infrared Tricarbocyanine Dyes to Double-Stranded DNA[J]. Appl Spectros, 1996,50(2):211-221. doi: 10.1366/0003702963906429

    5. [5]

      Kaloyanova S, Crnolatac I, Lesev N. Synthesis and Study of Nucleic Acids Interactions of Novel Monomethine Cyanine Dyes[J]. Dyes Pigm, 2012,92(3):1184-1191. doi: 10.1016/j.dyepig.2011.08.019

    6. [6]

      Glavas-Obrovac L, Piantanida I, Marczi S. Minor Structural Differences of Monomethine Cyanine Derivatives Yield Strong Variation in Their Interactions with DNA, RNA as well as on Their in Vitro Antiproliferative Activity[J]. Bioorg Med Chem, 2009,17(13):4747-4755. doi: 10.1016/j.bmc.2009.04.070

    7. [7]

      CAO Jianfang. The Mechanism of Different Sensitivity of Cyanine Dyes Derivatives in Rotation-Restricted Environments(DNA or Viscosity)[D]. Dalian:Dalian University of Technology, 2014(in Chinese). 

    8. [8]

      WU Tong. Synthesis and Biological Applications of Thiazole Orange Derived Unsymmetrical Cyanine Dyes[D]. Dalian:Dalian University of Technology, 2012(in Chinese). 

    9. [9]

      CHEN Xiuying, GUO Lin, ZHENG Changge. Synthesis and Spectral Properties of Benzothiazole Cyanine Dyes for Nucleic Acid Fluorescence Probe[J]. Chinese J Appl Chem, 2012,29(8):892-897.  

    10. [10]

      CHEN Xiuying, NIU Yanming, GUO Lin. Synthesis and Spectral Properties of Thiazole Orange Compounds as DNA Fluorescent Probes[J]. Chem Res Appl, 2010,22(10):1267-1271. doi: 10.3969/j.issn.1004-1656.2010.10.008

    11. [11]

      Rye H S, Yue S, Wemmer D E. Stable Fluorescent Complexes of Double-stranded DNA with Bis-intercalating Asymmetric Cyanine Dyes:Properties and Applications[J]. Nucl Acids Res, 1992,20(11):2803-2812. doi: 10.1093/nar/20.11.2803

    12. [12]

      Netzel T L, Nafisi K, Zhao M. Base-Content Dependence of Emission Enhancements, Quantum Yields, and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA:Photophysical Properties of Monomeric and Bichromomphoric DNA Stains[J]. J Phys Chem, 1995,99(51):17936-17947. doi: 10.1021/j100051a019

    13. [13]

      Silva G L, Ediz V, Yaron D. Experimental and Computational Investigation of Unsymmetrical Cyanine Dyes:Understanding Torsionally Responsive Fluorogenic Dyes[J]. J Am Chem Soc, 2007,129(17):5710-5718. doi: 10.1021/ja070025z

    14. [14]

      Peng X J, Wu T, Fan J L. An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification[J]. Angew Chem Int Ed, 2011,50(18):4180-4183. doi: 10.1002/anie.v50.18

    15. [15]

      Cao J, Wu T, Hu C. The Nature of the Different Environmental Sensitivity of Symmetrical and Unsymmetrical Cyanine Dyes:An Experimental and Theoretical Study[J]. Phys Chem Chem Phys, 2012,14(39):13702-13708. doi: 10.1039/c2cp42122d

    16. [16]

      Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior[J]. Phys Rev A, 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098

    17. [17]

      Treutler O, Ahlrichs R. Efficient Molecular Numerical Integration Schemes[J]. J Chem Phys, 1995,102(1):346-354. doi: 10.1063/1.469408

    18. [18]

      ZHOU Danhong, LI Miaomiao, CUI Lili. Photophysical Properties and Photoinduced Electron Transfer Mechanism in a Near-IR Fluorescent Probe for Monitoring Peroxynitrite[J]. Acta Phys-Chim Sin, 2013,29(7):1453-1460.  

    19. [19]

      Cao X, Tolbert R W, McHale J L. Theoretical Study of Solvent Effects on the Intramolecular Charge Transfer of a Hemicyanine Dye[J]. J Phys Chem A, 1998,102(17):2739-2748. doi: 10.1021/jp972190e

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    5. [5]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Hui Li Wei Cheng Meng Yu Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(5)
  • Abstract views(1654)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return