Research Progress in Titanium Based Perovskite as Photocatalytic Materials
- Corresponding author: XU Xiaoxiang, xxxu@tongji.edu.cn
Citation:
LU Lingwei, SUN Xiaoqin, WANG Yawei, JIANG Lu, XU Xiaoxiang. Research Progress in Titanium Based Perovskite as Photocatalytic Materials[J]. Chinese Journal of Applied Chemistry,
;2017, 34(11): 1221-1239.
doi:
10.11944/j.issn.1000-0518.2017.11.170305
Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chem Soc Rev, 2009,38(1):253-278. doi: 10.1039/B800489G
WEN Fuyu, YANG Jinhui, ONG Xu. Photocatalytic Hydrogen Production Utilizing Solar Energy[J]. Prog Chem, 2009,21(11):2285-2302.
Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0
Shi J Y, Chen J, Feng Z C. Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture[J]. J Phys Chem C, 2007,111(2):693-699. doi: 10.1021/jp065744z
Fujishima A, Zhang X, Trky D A. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf Sci Rep, 2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001
Wang G M, Wang H Y, Ling Y C. Hydrogen-treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting[J]. Nano Lett, 2011,11(7):3026-3033. doi: 10.1021/nl201766h
Chen X B, Liu L, Huang F Q. Black Titanium Dioxide(TiO2) Nanomaterials[J]. Chem Soc Rev, 2015,44(7):1861-1885. doi: 10.1039/C4CS00330F
Wang Z, Yang C Q, Lin T Q. Visible-light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-reduced Black Titania[J]. Energ Environ Sci, 2013,6(10):3007-3014. doi: 10.1039/c3ee41817k
Domen K, Naito S, Soma M. Photocatalytic Decomposition of Water Vapour on an NiO-SrTiO3 Catalyst[J]. J Phys Chem, 1982,86(18):3657-3661. doi: 10.1021/j100215a032
Kato H, Asakura K, Kudo A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure[J]. J Am Chem Soc, 2003,125(10):3082-3089. doi: 10.1021/ja027751g
Reber J F, Meier K. Photochemical Production of Hydrogen with Zinc Sulfide Suspensions[J]. J Phys Chem, 1984,88(24):5903-5913. doi: 10.1021/j150668a032
Miseki Y, Kato H, Kudo A. Water Splitting into H2 and O2 over Ba5Nb4O15 Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method[J]. Chem Lett, 2006,35(9):1052-1053. doi: 10.1246/cl.2006.1052
Tanaka H, Misono M. Advances in Designing Perovskite Catalysts[J]. Curr Opin Solid State Mater Sci, 2001,5(5):381-387. doi: 10.1016/S1359-0286(01)00035-3
Grabowska E. Selected Perovskite Oxides:Characterization, Preparation and Photocatalytic Properties-A Review[J]. Appl Catal B-Environ, 2016,186:97-126. doi: 10.1016/j.apcatb.2015.12.035
Pena M, Fierro J. Chemical Structures and Performance of Perovskite Oxides[J]. Chem Rev, 2001,101(7):1981-2018. doi: 10.1021/cr980129f
Mizoguchi H, Ueda K, Orita M. Decomposition of Water by a CaTiO3 Photocatalyst under UV Light Irradiation[J]. Mater Res Bull, 2002,37(15):2401-2406. doi: 10.1016/S0025-5408(02)00974-1
Reddy K H, Parida K. Fabrication, Characterization, and Photoelectrochemical Properties of Cu-Doped PbTiO3 and Its Hydrogen Production Activity[J]. ChemCatChem, 2013,5(12):3812-3820. doi: 10.1002/cctc.201300462
Lin X P, Xing J C, Wang W D. Photocatalytic Activities of Heterojunction Semiconductors Bi2O3/BaTiO3:A Strategy for the Design of Efficient Combined Photocatalysts[J]. J Phys Chem C, 2007,111(49):18288-18293. doi: 10.1021/jp073955d
Jin R C, Gao W L, Chen J X. Photocatalytic Reduction of Nitrate Ion in Drinking Water by Using Metal-Loaded MgTiO3-TiO2 Composite Semiconductor Catalyst[J]. J Photochem Photobiol A, 2004,162(2):585-590.
Kim Y J, Gao B F, Han S Y. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst[J]. J Phys Chem C, 2009,113(44):19179-19184. doi: 10.1021/jp908874k
Qu Y, Zhou W, Ren Z Y. Facile Preparation of Porous NiTiO3 Nanorods with Enhanced Visible-Light-Driven Photocatalytic Performance[J]. J Mater Chem, 2012,22(32):16471-16476. doi: 10.1039/c2jm32044d
Kong J Z, Li A D, Zhai H F. Preparation, Characterization and Photocatalytic Properties of ZnTiO3 Powders[J]. J Hazard Mater, 2009,171(1):918-923.
LI Na. Structure and Chemical Bonds of Perovskite Crystals[D]. Dalian:Dalian University of Technology, 2010(in Chinese).
Kasahara A, Nukumizu K, Hitoki G. Photoreactions on LaTiO2N under Visible Light Irradiation[J]. J Phys Chem A, 2002,106(29):6750-6753. doi: 10.1021/jp025961+
Wagner F, Ferrer S, Somorjai G. Photocatalytic Hydrogen Production from Water over SrTiO3 Crystal Surfaces, Electron Spectroscopy Studies of Adsorbed H2, O2 and H2O[J]. Surf Sci, 1980,101(1/2/3):462-474.
YU He. The Tuning of Optical Absorption Edge and Performance of Photocatalytic Hydrogen Evolution for SrTiO3[D]. Nanjing:Nanjing University, 2013(in Chinese).
Maeda K. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light[J]. ACS Appl Mater Interfaces, 2014,6(3):2167-2173. doi: 10.1021/am405293e
Kasahara A, Nukumizu K, Takata T. LaTiO2N as a Visible-Light(≤ 600 nm)-Driven Photocatalyst(2)[J]. J Phys Chem B, 2003,107(3):791-797. doi: 10.1021/jp026767q
Liu J W, Sun Y, Li Z H. Ag Loaded Flower-Like BaTiO3 Nanotube Arrays:Fabrication and Enhanced Photocatalytic Property[J]. Cryst Eng Comm, 2012,14(4):1473-1478. doi: 10.1039/C1CE05949A
Upadhyay S, Shrivastava J, Solanki A. Enhanced Photoelectrochemical Response of BaTiO3 with Fe Doping:Experiments and First-Principles Analysis[J]. J Phys Chem C, 2011,115(49):24373-24380. doi: 10.1021/jp202863a
Zhang H J, Chen G, He X D. Electronic Structure and Photocatalytic Properties of Ag-La Codoped CaTiO3[J]. J Alloy Compd, 2012,516:91-95. doi: 10.1016/j.jallcom.2011.11.142
Sun W, Zhang S Q, Wang C. Enhanced Photocatalytic Hydrogen Evolution over CaTi1-xZrxO3 Composites Synthesized by Polymerized Complex Method[J]. Catal Lett, 2007,119(1/2):148-153.
Zhang H J, Chen G, Li Y X. Electronic Structure and Photocatalytic Properties of Copper-Doped CaTiO3[J]. Int J Hydrogen Energy, 2010,35(7):2713-2716. doi: 10.1016/j.ijhydene.2009.04.050
Surendar T, Kumar S, Shanker V. Influence of La-Doping on Phase Transformation and Photocatalytic Properties of ZnTiO3 Nanoparticles Synthesized via Modified Sol-Gel Method[J]. Phys Chem Chem Phys, 2014,16(2):728-735. doi: 10.1039/C3CP53855A
Wu F F, Liu G, Xu X X. Efficient Photocatalytic Oxygen Production over Ca-Modified LaTiO2N[J]. J Catal, 2017,346:10-20. doi: 10.1016/j.jcat.2016.11.022
JIA Dewei, LU Yanli, HU Tingting. Research Progress of SrTiO3 Photocatalytic Materials[J]. Mater Rev, 2014,28(3):8-11.
Liu J, Chen G, Li Z. Electronic Structure and Visible Light Photocatalysis Water Splitting Property of Chromium-Doped SrTiO3[J]. J Solid State Chem, 2006,179(12):3704-3708. doi: 10.1016/j.jssc.2006.08.014
Konta R, Ishii T, Kato H. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation[J]. J Phys Chem B, 2004,108(26):8992-8995. doi: 10.1021/jp049556p
Iwashina K, Kudo A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation[J]. J Am Chem Soc, 2011,133(34):13272-13275. doi: 10.1021/ja2050315
Wang Q, Hisatomi T, Ma S S K. Core/shell Structured La-and Rh-Codoped SrTiO3 as a Hydrogen Evolution Photocatalyst in Z-scheme Overall Water Splitting under Visible Light Irradiation[J]. Chem Mater, 2014,26(14):4144-4150. doi: 10.1021/cm5011983
Lv M L, Xie Y H, Wang Y W. Bismuth and Chromium co-Doped Strontium Titanates and Their Photocatalytic Properties under Visible Light Irradiation[J]. Phys Chem Chem Phys, 2015,17(39):26320-26329. doi: 10.1039/C5CP03889H
Lu L W, Lv M L, Wang D. Efficient Photocatalytic Hydrogen Production over Solid Solutions Sr1-xBixTi1-xFexO3(0 ≤ x ≤ 0.5)[J]. Appl Catal B-Environ, 2017,200:412-419. doi: 10.1016/j.apcatb.2016.07.035
Wang J S, Yin S, Komatsu M. Preparation and Characterization of Nitrogen Doped SrTiO3 Photocatalyst[J]. J Photochem Photobiol A, 2004,165(1):149-156.
Ohno T, Tsubota T, Nakamura Y. Preparation of S, C Cation-Codoped SrTiO3 and Its Photocatalytic Activity under Visible Light[J]. Appl Catal A-Gen, 2005,288(1):74-79.
Kato H, Sasaki Y, Shirakura N. Synthesis of Highly Active Rhodium-Doped SrTiO3 Powders in Z-scheme Systems for Visible-Light-Driven Photocatalytic Overall Water Splitting[J]. J Mater Chem A, 2013,1(39):12327-12333. doi: 10.1039/c3ta12803b
Zou J P, Zhang L Z, Luo S L. Preparation and Photocatalytic Activities of Two New Zn-Doped SrTiO3 and BaTiO3 Photocatalysts for Hydrogen Production from Water Without Cocatalysts Loading[J]. Int J Hydrogen Energ, 2012,37(22):17068-17077. doi: 10.1016/j.ijhydene.2012.08.133
Shi J W, Ye J H, Ma L J. Site-Selected Doping of Upconversion Luminescent Er3+ into SrTiO3 for Visible-Light-Driven Photocatalytic H2 or O2 Evolution[J]. Chem-Eur J, 2012,18(24):7543-7551. doi: 10.1002/chem.201102807
Wang J S, Yin S, Komatsu M. Lanthanum and Nitrogen co-Doped SrTiO3 Powders as Visible Light Sensitive Photocatalyst[J]. J Eur Ceram Soc, 2005,25(13):3207-3212. doi: 10.1016/j.jeurceramsoc.2004.07.027
Wang J S, Yin S, Zhang Q W. Mechanochemical Synthesis of SrTiO3-xFx with High Visible Light Photocatalytic Activities for Nitrogen Monoxide Destruction[J]. J Mater Chem, 2003,13(9):2348-2352. doi: 10.1039/B303420H
Kato H, Kudo A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium[J]. J Phys Chem B, 2002,106(19):5029-5034. doi: 10.1021/jp0255482
Ishii T, Kato H, Kudo A. H2Evolution from an Aqueous Methanol Solution on SrTiO3 Photocatalysts Codoped with Chromium and Tantalum Ions under Visible Light Irradiation[J]. J Photochem Photobiol A, 2004,163(1):181-186.
Niishiro R, Kato H, Kudo A. Nickel and Either Tantalum or Niobium-Codoped TiO2 and SrTiO3 Photocatalysts with Visible-Light Response for H2 or O2 Evolution from Aqueous Solutions[J]. Phys Chem Chem Phys, 2005,7(10):2241-2245. doi: 10.1039/b502147b
Irie H, Maruyama Y, Hashimoto K. Ag+ and Pb2+ Doped SrTiO3Photocatalysts. A Correlation Between Band Structure and Photocatalytic Activity[J]. J Phys Chem C, 2007,111(4):1847-1852. doi: 10.1021/jp066591i
Yu H, Yan S C, Li Z S. Efficient Visible-Light-Driven Photocatalytic H2 Production over Cr/N-Codoped SrTiO3[J]. Int J Hydrogen Energy, 2012,37(17):12120-12127. doi: 10.1016/j.ijhydene.2012.05.097
Puangpetch T, Sreethawong T, Yoshikawa S. Synthesis and Photocatalytic Activity in Methyl Orange Degradation of Mesoporous-assembled SrTiO3 Nanocrystals Prepared by Sol-gel Method with the Aid of Structure-directing Surfactant[J]. J Mol Catal A-Chem, 2008,287(1):70-79.
Zheng Z K, Huang B B, Qin X Y. Facile Synthesis of SrTiO3 Hollow Microspheres Built as Assembly of Nanocubes and Their Associated Photocatalytic Activity[J]. J Colloid Interface Sci, 2011,358(1):68-72. doi: 10.1016/j.jcis.2011.02.032
Dong W J, Li X Y, Yu J. Porous SrTiO3 Spheres with Enhanced Photocatalytic Performance[J]. Mater Lett, 2012,67(1):131-134. doi: 10.1016/j.matlet.2011.09.045
Jia Y S, Shen S, Wang D E. Composite Sr2TiO4/SrTiO3(La, Cr) Heterojunction Based Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. J Mater Chem A, 2013,1(27):7905-7912. doi: 10.1039/c3ta11326d
LIU Hanxing, SUN Xiaoqin, XIAO Jing. Study on Tabular SrTiO3 Processed by Molten Salt Synthesis Method[J]. Acta Chim Sin, 2004,62(3):324-327.
XIN Gang, GUO Wei, MA Yanli. Study on the Photohydrolysis of Strontium Titanate by Molten Salt Method[J]. J Dalian Univ Technol, 2011,51(1):20-24. doi: 10.7511/dllgxb201101004
Kuang Q, Yang S H. Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution[J]. ACS Appl Mater Interfaces, 2013,5(9):3683-3690. doi: 10.1021/am400254n
CHEN Chao, WANG Zhiyu. Synthesis and Crystal Growth Mechanism of Titanium Dioxide Nanorods[J]. J Inorg Mater, 2011,27(1):45-48.
Guo J J, Ouyang S X, Li P. A New Heterojunction Ag3PO4/Cr-SrTiO3 Photocatalyst towards Efficient Elimination of Gaseous Organic Pollutants under Visible Light Irradiation[J]. Appl Catal B-Environ, 2013,134:286-292.
Niishiro R, Tanaka S, Kudo A. Hydrothermal-Synthesized SrTiO3 Photocatalyst Codoped with Rhodium and Antimony with Visible-Light Response for Sacrificial H2 and O2 Evolution and Application to Overall Water Splitting[J]. Appl Catal B-Environ, 2014,150:187-196.
Sasaki Y, Iwase A, Kato H. The Effect of Co-catalyst for Z-scheme Photocatalysis Systems with an Fe3+/Fe2+ Electron Mediator on Overall Water Splitting under Visible Light Irradiation[J]. J Catal, 2008,259(1):133-137. doi: 10.1016/j.jcat.2008.07.017
Miseki Y, Kato H, Kudo A. Water Splitting into H2 and O2 over Niobate and Titanate Photocatalysts with (111) Plane-type Layered Perovskite Structure[J]. Energy Environ Sci, 2009,2(3):306-314. doi: 10.1039/b818922f
Takata T, Furumi Y, Shinohara K. Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites[J]. Chem Mater, 1997,9(5):1063-1064. doi: 10.1021/cm960612b
Thaminimulla C, Takata T, Hara M. Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni-K2La2Ti3O10[J]. J Catal, 2000,196(2):362-365. doi: 10.1006/jcat.2000.3049
Kudo A, Hijii S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions[J]. Chem Lett, 1999,28(10):1103-1104. doi: 10.1246/cl.1999.1103
Zhang H J, Chen G, Li X. Synthesis and Visible Light Photocatalysis Water Splitting Property of Chromium-Doped Bi4Ti3O12[J]. Solid State Ionics, 2009,180(36):1599-1603.
Guo Y, Li J H, Gao Z Q. A Simple and Effective Method for Fabricating Novel p-n Heterojunction Photocatalyst g-C3N4/Bi4Ti3O12 and Its Photocatalytic Performances[J]. Appl Catal B-Environ, 2016,192:57-71. doi: 10.1016/j.apcatb.2016.03.054
He H Q, Yin J, Li Y X. Size Controllable Synthesis of Single-crystal Ferroelectric Bi4Ti3O12 Nanosheet Dominated with {001} Facets toward Enhanced Visible-Light-Driven Photocatalytic Activities[J]. Appl Catal B-Environ, 2014,156:35-43.
Kudo A. Development of Photocatalyst Materials for Water Splitting with the Aim at Photon Energy Conversion[J]. J Ceram Soc Jpn, 2001,109(1270):S81-S88. doi: 10.2109/jcersj.109.1270_S81
Xu L, Wan Y P, Xie H D. On Structure, Optical Properties and Photodegradated Ability of Aurivillius-Type Bi3TiNbO9 Nanoparticles[J]. J Am Ceram Soc, 2016,99(12):3964-3972. doi: 10.1111/jace.14423
Jiang L, Ni S, Liu G. Photocatalytic Hydrogen Production over Aurivillius Compound Bi3TiNbO9 and Its Modifications by Cr/Nb Co-doping[J]. Appl Catal B-Environ, 2017,217:342-352. doi: 10.1016/j.apcatb.2017.06.012
Haeni J, Schlom D, Tian W, et al. Nanoenineering of Ruddlesden-Popper Phases Using Molecular Beam Epitaxy[D]. Pennsylvania State:The Pennsylvania State University, 2002.
Jia Y S, Shen S, Wang D E. Composite Sr2TiO4/SrTiO3(La, Cr) Heterojunction Based Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. J Mater Chem A, 2013,1(27):7905-7912. doi: 10.1039/c3ta11326d
Sun X Q, Xie Y H, Wu F F. Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4[J]. Inorg Chem, 2015,54(15):7445-7453. doi: 10.1021/acs.inorgchem.5b01042
Sun X Q, Xu X X. Efficient Photocatalytic Hydrogen Production over La/Rh co-Doped Ruddlesden-Popper Compound Sr2TiO4[J]. Appl Catal B-Environ, 2017,210:149-159. doi: 10.1016/j.apcatb.2017.03.063
Yang Y H, Chen Q Y, Yin Z L. Study on the Photocatalytic Activity of K2La2Ti3O10 Doped with Vanadium(V)[J]. J Alloy Compd, 2009,488(1):364-369. doi: 10.1016/j.jallcom.2009.08.136
Yang Y H, Chen Q Y, Yin Z L. Study on the Photocatalytic Activity of K2La2Ti3O10 Doped with Zinc(Zn)[J]. Appl Surf Sci, 2009,255(20):8419-8424. doi: 10.1016/j.apsusc.2009.05.146
Lin X, Guan Q F, Zhang Y. Visible Light Photocatalytic Properties of Bi3.25Eu0.75Ti3O12 Nanowires[J]. J Phys Chem Solids, 2013,74(9):1254-1262. doi: 10.1016/j.jpcs.2013.04.001
Li Y Y, Dang L Y, Han L F. Iodine-sensitized Bi4Ti3O12/TiO2 Photocatalyst with Enhanced Photocatalytic Activity on Degradation of Phenol[J]. J Mol Catal A-Chem, 2013,379:146-151. doi: 10.1016/j.molcata.2013.08.001
Song H P, Peng T Y, Cai P. Hydrothermal Synthesis of Flaky Crystallized La2Ti2O7 for Producing Hydrogen from Photocatalytic Water Splitting[J]. Catal Lett, 2007,113(1/2):54-58.
Kim H G, Hwang D W, Bae S W. Photocatalytic Water Splitting over La2Ti2O7 Synthesized by the Polymerizable Complex Method[J]. Catal Lett, 2003,91(3):193-198.
Arney D, Porter B, Greve B. New Molten-salt Synthesis and Photocatalytic Properties of La2Ti2O7 Particles[J]. J Photochem Photobiol A, 2008,199(2):230-235.
Hwang D W, Kim H G, Jang J S. Photocatalytic Decomposition of Water-Methanol Solution over Metal-Doped Layered Perovskites under Visible Light Irradiation[J]. Catal Today, 2004,93:845-850.
Nashim A, Martha S, Parida K. Heterojunction Conception of n-La2Ti2O7/p-CuO in the Limelight of Photocatalytic Formation of Hydrogen under Visible Light[J]. RSC Adv, 2014,4(28):14633-14643. doi: 10.1039/c3ra47037g
Cai X Y, Zhang J Y, Fujitsuka M. Graphitic-C3N4 Hybridized N-Doped La2Ti2O7 Two-dimensional Layered Composites as Efficient Visible-Light-Driven Photocatalyst[J]. Appl Catal B-Environ, 2017,202:191-198. doi: 10.1016/j.apcatb.2016.09.021
Kim H, Hwang D, Kim Y. Highly Donor-Doped (110) Layered Perovskite Materials as Novel Photocatalysts for Overall Water Splitting[J]. Chem Commun, 1999,12:1077-1078.
Hwang D W, Kim H G, Lee J S. Photocatalytic Hydrogen Production from Water over M-doped La2Ti2O7(M=Cr, Fe) under Visible Light Irradiation(λ>420 nm)[J]. J Phys Chem B, 2005,109(6):2093-2102. doi: 10.1021/jp0493226
Meng F K, Hong Z L, Arndt J. Visible Light Photocatalytic Activity of Nitrogen-Doped La2Ti2O7 Nanosheets Originating from Band Gap Narrowing[J]. Nano Res, 2012,5(3):213-221. doi: 10.1007/s12274-012-0201-x
Iizuka K, Wato T, Miseki Y. Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-loaded ALa4Ti4O15(A=Ca, Sr, and Ba) Using Water as a Reducing Reagent[J]. J Am Chem Soc, 2011,133(51):20863-20868. doi: 10.1021/ja207586e
Negishi Y, Matsuura Y, Tomizawa R. Controlled Loading of Small Aun Clusters(n=10~39) onto BaLa4Ti4O15 Photocatalysts:Toward an Understanding of Size Effect of Cocatalyst on Water-Splitting Photocatalytic Activity[J]. J Phys Chem C, 2015,119(20):11224-11232. doi: 10.1021/jp5122432
Negishi Y, Mizuno M, Hirayama M. Enhanced Photocatalytic Water Splitting by BaLa4Ti4O15 Loaded with~1 nm Gold Nanoclusters Using Glutathione-protected Au 25 Clusters[J]. Nanoscale, 2013,5(16):7188-7192. doi: 10.1039/c3nr01888a
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019