Citation: LU Lingwei, SUN Xiaoqin, WANG Yawei, JIANG Lu, XU Xiaoxiang. Research Progress in Titanium Based Perovskite as Photocatalytic Materials[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1221-1239. doi: 10.11944/j.issn.1000-0518.2017.11.170305 shu

Research Progress in Titanium Based Perovskite as Photocatalytic Materials

  • Corresponding author: XU Xiaoxiang, xxxu@tongji.edu.cn
  • Received Date: 30 August 2017
    Revised Date: 29 September 2017
    Accepted Date: 11 October 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21401142), the Recruitment Program of Global Youth Experts(No.1000 plan), the Fundamental Research Funds for the Central Universities, Shanghai Science and Technology Commission (No.14DZ2261100)the National Natural Science Foundation of China 21401142the Recruitment Program of Global Youth Experts(No.1000 plan), the Fundamental Research Funds for the Central Universities, Shanghai Science and Technology Commission 14DZ2261100

Figures(19)

  • It is extremely urgent to look for new and clean energy because fossil fuels are consumed rapidly and release harmful gas in the combustion process. Hydrogen has the advantages of high combustion value and high efficiency, so it has become one of the most promising new energy. Using solar energy to produce hydrogen is a method which conforms to "green chemistry". According to the current exploration of photocatalyst, perovskite photocatalyst has become a popular research system because of its diversity, characteristic and variability. Titanium based perovskite materials and its derivatives show many excellent photocatalytic activities and it is a research hotspot in the field of solar photocatalytic studies. In this paper, the structure, modification method and the research progress of titanium-based perovskite materials and their derivatives are briefly reviewed.
  • 加载中
    1. [1]

      Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chem Soc Rev, 2009,38(1):253-278. doi: 10.1039/B800489G

    2. [2]

      WEN Fuyu, YANG Jinhui, ONG Xu. Photocatalytic Hydrogen Production Utilizing Solar Energy[J]. Prog Chem, 2009,21(11):2285-2302.  

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    4. [4]

      Shi J Y, Chen J, Feng Z C. Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture[J]. J Phys Chem C, 2007,111(2):693-699. doi: 10.1021/jp065744z

    5. [5]

      Fujishima A, Zhang X, Trky D A. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf Sci Rep, 2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001

    6. [6]

      Wang G M, Wang H Y, Ling Y C. Hydrogen-treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting[J]. Nano Lett, 2011,11(7):3026-3033. doi: 10.1021/nl201766h

    7. [7]

      Chen X B, Liu L, Huang F Q. Black Titanium Dioxide(TiO2) Nanomaterials[J]. Chem Soc Rev, 2015,44(7):1861-1885. doi: 10.1039/C4CS00330F

    8. [8]

      Wang Z, Yang C Q, Lin T Q. Visible-light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-reduced Black Titania[J]. Energ Environ Sci, 2013,6(10):3007-3014. doi: 10.1039/c3ee41817k

    9. [9]

      Domen K, Naito S, Soma M. Photocatalytic Decomposition of Water Vapour on an NiO-SrTiO3 Catalyst[J]. J Phys Chem, 1982,86(18):3657-3661. doi: 10.1021/j100215a032

    10. [10]

      Kato H, Asakura K, Kudo A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure[J]. J Am Chem Soc, 2003,125(10):3082-3089. doi: 10.1021/ja027751g

    11. [11]

      Reber J F, Meier K. Photochemical Production of Hydrogen with Zinc Sulfide Suspensions[J]. J Phys Chem, 1984,88(24):5903-5913. doi: 10.1021/j150668a032

    12. [12]

      Miseki Y, Kato H, Kudo A. Water Splitting into H2 and O2 over Ba5Nb4O15 Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method[J]. Chem Lett, 2006,35(9):1052-1053. doi: 10.1246/cl.2006.1052

    13. [13]

      Tanaka H, Misono M. Advances in Designing Perovskite Catalysts[J]. Curr Opin Solid State Mater Sci, 2001,5(5):381-387. doi: 10.1016/S1359-0286(01)00035-3

    14. [14]

      Grabowska E. Selected Perovskite Oxides:Characterization, Preparation and Photocatalytic Properties-A Review[J]. Appl Catal B-Environ, 2016,186:97-126. doi: 10.1016/j.apcatb.2015.12.035

    15. [15]

      Pena M, Fierro J. Chemical Structures and Performance of Perovskite Oxides[J]. Chem Rev, 2001,101(7):1981-2018. doi: 10.1021/cr980129f

    16. [16]

      Mizoguchi H, Ueda K, Orita M. Decomposition of Water by a CaTiO3 Photocatalyst under UV Light Irradiation[J]. Mater Res Bull, 2002,37(15):2401-2406. doi: 10.1016/S0025-5408(02)00974-1

    17. [17]

      Reddy K H, Parida K. Fabrication, Characterization, and Photoelectrochemical Properties of Cu-Doped PbTiO3 and Its Hydrogen Production Activity[J]. ChemCatChem, 2013,5(12):3812-3820. doi: 10.1002/cctc.201300462

    18. [18]

      Lin X P, Xing J C, Wang W D. Photocatalytic Activities of Heterojunction Semiconductors Bi2O3/BaTiO3:A Strategy for the Design of Efficient Combined Photocatalysts[J]. J Phys Chem C, 2007,111(49):18288-18293. doi: 10.1021/jp073955d

    19. [19]

      Jin R C, Gao W L, Chen J X. Photocatalytic Reduction of Nitrate Ion in Drinking Water by Using Metal-Loaded MgTiO3-TiO2 Composite Semiconductor Catalyst[J]. J Photochem Photobiol A, 2004,162(2):585-590.  

    20. [20]

      Kim Y J, Gao B F, Han S Y. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst[J]. J Phys Chem C, 2009,113(44):19179-19184. doi: 10.1021/jp908874k

    21. [21]

      Qu Y, Zhou W, Ren Z Y. Facile Preparation of Porous NiTiO3 Nanorods with Enhanced Visible-Light-Driven Photocatalytic Performance[J]. J Mater Chem, 2012,22(32):16471-16476. doi: 10.1039/c2jm32044d

    22. [22]

      Kong J Z, Li A D, Zhai H F. Preparation, Characterization and Photocatalytic Properties of ZnTiO3 Powders[J]. J Hazard Mater, 2009,171(1):918-923.  

    23. [23]

      LI Na. Structure and Chemical Bonds of Perovskite Crystals[D]. Dalian:Dalian University of Technology, 2010(in Chinese). 

    24. [24]

      Kasahara A, Nukumizu K, Hitoki G. Photoreactions on LaTiO2N under Visible Light Irradiation[J]. J Phys Chem A, 2002,106(29):6750-6753. doi: 10.1021/jp025961+

    25. [25]

      Wagner F, Ferrer S, Somorjai G. Photocatalytic Hydrogen Production from Water over SrTiO3 Crystal Surfaces, Electron Spectroscopy Studies of Adsorbed H2, O2 and H2O[J]. Surf Sci, 1980,101(1/2/3):462-474.

    26. [26]

      YU He. The Tuning of Optical Absorption Edge and Performance of Photocatalytic Hydrogen Evolution for SrTiO3[D]. Nanjing:Nanjing University, 2013(in Chinese). 

    27. [27]

      Maeda K. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light[J]. ACS Appl Mater Interfaces, 2014,6(3):2167-2173. doi: 10.1021/am405293e

    28. [28]

      Kasahara A, Nukumizu K, Takata T. LaTiO2N as a Visible-Light(≤ 600 nm)-Driven Photocatalyst(2)[J]. J Phys Chem B, 2003,107(3):791-797. doi: 10.1021/jp026767q

    29. [29]

      Liu J W, Sun Y, Li Z H. Ag Loaded Flower-Like BaTiO3 Nanotube Arrays:Fabrication and Enhanced Photocatalytic Property[J]. Cryst Eng Comm, 2012,14(4):1473-1478. doi: 10.1039/C1CE05949A

    30. [30]

      Upadhyay S, Shrivastava J, Solanki A. Enhanced Photoelectrochemical Response of BaTiO3 with Fe Doping:Experiments and First-Principles Analysis[J]. J Phys Chem C, 2011,115(49):24373-24380. doi: 10.1021/jp202863a

    31. [31]

      Zhang H J, Chen G, He X D. Electronic Structure and Photocatalytic Properties of Ag-La Codoped CaTiO3[J]. J Alloy Compd, 2012,516:91-95. doi: 10.1016/j.jallcom.2011.11.142

    32. [32]

      Sun W, Zhang S Q, Wang C. Enhanced Photocatalytic Hydrogen Evolution over CaTi1-xZrxO3 Composites Synthesized by Polymerized Complex Method[J]. Catal Lett, 2007,119(1/2):148-153.

    33. [33]

      Zhang H J, Chen G, Li Y X. Electronic Structure and Photocatalytic Properties of Copper-Doped CaTiO3[J]. Int J Hydrogen Energy, 2010,35(7):2713-2716. doi: 10.1016/j.ijhydene.2009.04.050

    34. [34]

      Surendar T, Kumar S, Shanker V. Influence of La-Doping on Phase Transformation and Photocatalytic Properties of ZnTiO3 Nanoparticles Synthesized via Modified Sol-Gel Method[J]. Phys Chem Chem Phys, 2014,16(2):728-735. doi: 10.1039/C3CP53855A

    35. [35]

      Wu F F, Liu G, Xu X X. Efficient Photocatalytic Oxygen Production over Ca-Modified LaTiO2N[J]. J Catal, 2017,346:10-20. doi: 10.1016/j.jcat.2016.11.022

    36. [36]

      JIA Dewei, LU Yanli, HU Tingting. Research Progress of SrTiO3 Photocatalytic Materials[J]. Mater Rev, 2014,28(3):8-11.  

    37. [37]

      Liu J, Chen G, Li Z. Electronic Structure and Visible Light Photocatalysis Water Splitting Property of Chromium-Doped SrTiO3[J]. J Solid State Chem, 2006,179(12):3704-3708. doi: 10.1016/j.jssc.2006.08.014

    38. [38]

      Konta R, Ishii T, Kato H. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation[J]. J Phys Chem B, 2004,108(26):8992-8995. doi: 10.1021/jp049556p

    39. [39]

      Iwashina K, Kudo A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation[J]. J Am Chem Soc, 2011,133(34):13272-13275. doi: 10.1021/ja2050315

    40. [40]

      Wang Q, Hisatomi T, Ma S S K. Core/shell Structured La-and Rh-Codoped SrTiO3 as a Hydrogen Evolution Photocatalyst in Z-scheme Overall Water Splitting under Visible Light Irradiation[J]. Chem Mater, 2014,26(14):4144-4150. doi: 10.1021/cm5011983

    41. [41]

      Lv M L, Xie Y H, Wang Y W. Bismuth and Chromium co-Doped Strontium Titanates and Their Photocatalytic Properties under Visible Light Irradiation[J]. Phys Chem Chem Phys, 2015,17(39):26320-26329. doi: 10.1039/C5CP03889H

    42. [42]

      Lu L W, Lv M L, Wang D. Efficient Photocatalytic Hydrogen Production over Solid Solutions Sr1-xBixTi1-xFexO3(0 ≤ x ≤ 0.5)[J]. Appl Catal B-Environ, 2017,200:412-419. doi: 10.1016/j.apcatb.2016.07.035

    43. [43]

      Wang J S, Yin S, Komatsu M. Preparation and Characterization of Nitrogen Doped SrTiO3 Photocatalyst[J]. J Photochem Photobiol A, 2004,165(1):149-156.  

    44. [44]

      Ohno T, Tsubota T, Nakamura Y. Preparation of S, C Cation-Codoped SrTiO3 and Its Photocatalytic Activity under Visible Light[J]. Appl Catal A-Gen, 2005,288(1):74-79.  

    45. [45]

      Kato H, Sasaki Y, Shirakura N. Synthesis of Highly Active Rhodium-Doped SrTiO3 Powders in Z-scheme Systems for Visible-Light-Driven Photocatalytic Overall Water Splitting[J]. J Mater Chem A, 2013,1(39):12327-12333. doi: 10.1039/c3ta12803b

    46. [46]

      Zou J P, Zhang L Z, Luo S L. Preparation and Photocatalytic Activities of Two New Zn-Doped SrTiO3 and BaTiO3 Photocatalysts for Hydrogen Production from Water Without Cocatalysts Loading[J]. Int J Hydrogen Energ, 2012,37(22):17068-17077. doi: 10.1016/j.ijhydene.2012.08.133

    47. [47]

      Shi J W, Ye J H, Ma L J. Site-Selected Doping of Upconversion Luminescent Er3+ into SrTiO3 for Visible-Light-Driven Photocatalytic H2 or O2 Evolution[J]. Chem-Eur J, 2012,18(24):7543-7551. doi: 10.1002/chem.201102807

    48. [48]

      Wang J S, Yin S, Komatsu M. Lanthanum and Nitrogen co-Doped SrTiO3 Powders as Visible Light Sensitive Photocatalyst[J]. J Eur Ceram Soc, 2005,25(13):3207-3212. doi: 10.1016/j.jeurceramsoc.2004.07.027

    49. [49]

      Wang J S, Yin S, Zhang Q W. Mechanochemical Synthesis of SrTiO3-xFx with High Visible Light Photocatalytic Activities for Nitrogen Monoxide Destruction[J]. J Mater Chem, 2003,13(9):2348-2352. doi: 10.1039/B303420H

    50. [50]

      Kato H, Kudo A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium[J]. J Phys Chem B, 2002,106(19):5029-5034. doi: 10.1021/jp0255482

    51. [51]

      Ishii T, Kato H, Kudo A. H2Evolution from an Aqueous Methanol Solution on SrTiO3 Photocatalysts Codoped with Chromium and Tantalum Ions under Visible Light Irradiation[J]. J Photochem Photobiol A, 2004,163(1):181-186.  

    52. [52]

      Niishiro R, Kato H, Kudo A. Nickel and Either Tantalum or Niobium-Codoped TiO2 and SrTiO3 Photocatalysts with Visible-Light Response for H2 or O2 Evolution from Aqueous Solutions[J]. Phys Chem Chem Phys, 2005,7(10):2241-2245. doi: 10.1039/b502147b

    53. [53]

      Irie H, Maruyama Y, Hashimoto K. Ag+ and Pb2+ Doped SrTiO3Photocatalysts. A Correlation Between Band Structure and Photocatalytic Activity[J]. J Phys Chem C, 2007,111(4):1847-1852. doi: 10.1021/jp066591i

    54. [54]

      Yu H, Yan S C, Li Z S. Efficient Visible-Light-Driven Photocatalytic H2 Production over Cr/N-Codoped SrTiO3[J]. Int J Hydrogen Energy, 2012,37(17):12120-12127. doi: 10.1016/j.ijhydene.2012.05.097

    55. [55]

      Puangpetch T, Sreethawong T, Yoshikawa S. Synthesis and Photocatalytic Activity in Methyl Orange Degradation of Mesoporous-assembled SrTiO3 Nanocrystals Prepared by Sol-gel Method with the Aid of Structure-directing Surfactant[J]. J Mol Catal A-Chem, 2008,287(1):70-79.

    56. [56]

      Zheng Z K, Huang B B, Qin X Y. Facile Synthesis of SrTiO3 Hollow Microspheres Built as Assembly of Nanocubes and Their Associated Photocatalytic Activity[J]. J Colloid Interface Sci, 2011,358(1):68-72. doi: 10.1016/j.jcis.2011.02.032

    57. [57]

      Dong W J, Li X Y, Yu J. Porous SrTiO3 Spheres with Enhanced Photocatalytic Performance[J]. Mater Lett, 2012,67(1):131-134. doi: 10.1016/j.matlet.2011.09.045

    58. [58]

      Jia Y S, Shen S, Wang D E. Composite Sr2TiO4/SrTiO3(La, Cr) Heterojunction Based Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. J Mater Chem A, 2013,1(27):7905-7912. doi: 10.1039/c3ta11326d

    59. [59]

      LIU Hanxing, SUN Xiaoqin, XIAO Jing. Study on Tabular SrTiO3 Processed by Molten Salt Synthesis Method[J]. Acta Chim Sin, 2004,62(3):324-327.  

    60. [60]

      XIN Gang, GUO Wei, MA Yanli. Study on the Photohydrolysis of Strontium Titanate by Molten Salt Method[J]. J Dalian Univ Technol, 2011,51(1):20-24. doi: 10.7511/dllgxb201101004

    61. [61]

      Kuang Q, Yang S H. Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution[J]. ACS Appl Mater Interfaces, 2013,5(9):3683-3690. doi: 10.1021/am400254n

    62. [62]

      CHEN Chao, WANG Zhiyu. Synthesis and Crystal Growth Mechanism of Titanium Dioxide Nanorods[J]. J Inorg Mater, 2011,27(1):45-48.  

    63. [63]

      Guo J J, Ouyang S X, Li P. A New Heterojunction Ag3PO4/Cr-SrTiO3 Photocatalyst towards Efficient Elimination of Gaseous Organic Pollutants under Visible Light Irradiation[J]. Appl Catal B-Environ, 2013,134:286-292.  

    64. [64]

      Niishiro R, Tanaka S, Kudo A. Hydrothermal-Synthesized SrTiO3 Photocatalyst Codoped with Rhodium and Antimony with Visible-Light Response for Sacrificial H2 and O2 Evolution and Application to Overall Water Splitting[J]. Appl Catal B-Environ, 2014,150:187-196.

    65. [65]

      Sasaki Y, Iwase A, Kato H. The Effect of Co-catalyst for Z-scheme Photocatalysis Systems with an Fe3+/Fe2+ Electron Mediator on Overall Water Splitting under Visible Light Irradiation[J]. J Catal, 2008,259(1):133-137. doi: 10.1016/j.jcat.2008.07.017

    66. [66]

      Miseki Y, Kato H, Kudo A. Water Splitting into H2 and O2 over Niobate and Titanate Photocatalysts with (111) Plane-type Layered Perovskite Structure[J]. Energy Environ Sci, 2009,2(3):306-314. doi: 10.1039/b818922f

    67. [67]

      Takata T, Furumi Y, Shinohara K. Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites[J]. Chem Mater, 1997,9(5):1063-1064. doi: 10.1021/cm960612b

    68. [68]

      Thaminimulla C, Takata T, Hara M. Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni-K2La2Ti3O10[J]. J Catal, 2000,196(2):362-365. doi: 10.1006/jcat.2000.3049

    69. [69]

      Kudo A, Hijii S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions[J]. Chem Lett, 1999,28(10):1103-1104. doi: 10.1246/cl.1999.1103

    70. [70]

      Zhang H J, Chen G, Li X. Synthesis and Visible Light Photocatalysis Water Splitting Property of Chromium-Doped Bi4Ti3O12[J]. Solid State Ionics, 2009,180(36):1599-1603.  

    71. [71]

      Guo Y, Li J H, Gao Z Q. A Simple and Effective Method for Fabricating Novel p-n Heterojunction Photocatalyst g-C3N4/Bi4Ti3O12 and Its Photocatalytic Performances[J]. Appl Catal B-Environ, 2016,192:57-71. doi: 10.1016/j.apcatb.2016.03.054

    72. [72]

      He H Q, Yin J, Li Y X. Size Controllable Synthesis of Single-crystal Ferroelectric Bi4Ti3O12 Nanosheet Dominated with {001} Facets toward Enhanced Visible-Light-Driven Photocatalytic Activities[J]. Appl Catal B-Environ, 2014,156:35-43.

    73. [73]

      Kudo A. Development of Photocatalyst Materials for Water Splitting with the Aim at Photon Energy Conversion[J]. J Ceram Soc Jpn, 2001,109(1270):S81-S88. doi: 10.2109/jcersj.109.1270_S81

    74. [74]

      Xu L, Wan Y P, Xie H D. On Structure, Optical Properties and Photodegradated Ability of Aurivillius-Type Bi3TiNbO9 Nanoparticles[J]. J Am Ceram Soc, 2016,99(12):3964-3972. doi: 10.1111/jace.14423

    75. [75]

      Jiang L, Ni S, Liu G. Photocatalytic Hydrogen Production over Aurivillius Compound Bi3TiNbO9 and Its Modifications by Cr/Nb Co-doping[J]. Appl Catal B-Environ, 2017,217:342-352. doi: 10.1016/j.apcatb.2017.06.012

    76. [76]

      Haeni J, Schlom D, Tian W, et al. Nanoenineering of Ruddlesden-Popper Phases Using Molecular Beam Epitaxy[D]. Pennsylvania State:The Pennsylvania State University, 2002. 

    77. [77]

      Jia Y S, Shen S, Wang D E. Composite Sr2TiO4/SrTiO3(La, Cr) Heterojunction Based Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. J Mater Chem A, 2013,1(27):7905-7912. doi: 10.1039/c3ta11326d

    78. [78]

      Sun X Q, Xie Y H, Wu F F. Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4[J]. Inorg Chem, 2015,54(15):7445-7453. doi: 10.1021/acs.inorgchem.5b01042

    79. [79]

      Sun X Q, Xu X X. Efficient Photocatalytic Hydrogen Production over La/Rh co-Doped Ruddlesden-Popper Compound Sr2TiO4[J]. Appl Catal B-Environ, 2017,210:149-159. doi: 10.1016/j.apcatb.2017.03.063

    80. [80]

      Yang Y H, Chen Q Y, Yin Z L. Study on the Photocatalytic Activity of K2La2Ti3O10 Doped with Vanadium(V)[J]. J Alloy Compd, 2009,488(1):364-369. doi: 10.1016/j.jallcom.2009.08.136

    81. [81]

      Yang Y H, Chen Q Y, Yin Z L. Study on the Photocatalytic Activity of K2La2Ti3O10 Doped with Zinc(Zn)[J]. Appl Surf Sci, 2009,255(20):8419-8424. doi: 10.1016/j.apsusc.2009.05.146

    82. [82]

      Lin X, Guan Q F, Zhang Y. Visible Light Photocatalytic Properties of Bi3.25Eu0.75Ti3O12 Nanowires[J]. J Phys Chem Solids, 2013,74(9):1254-1262. doi: 10.1016/j.jpcs.2013.04.001

    83. [83]

      Li Y Y, Dang L Y, Han L F. Iodine-sensitized Bi4Ti3O12/TiO2 Photocatalyst with Enhanced Photocatalytic Activity on Degradation of Phenol[J]. J Mol Catal A-Chem, 2013,379:146-151. doi: 10.1016/j.molcata.2013.08.001

    84. [84]

      Song H P, Peng T Y, Cai P. Hydrothermal Synthesis of Flaky Crystallized La2Ti2O7 for Producing Hydrogen from Photocatalytic Water Splitting[J]. Catal Lett, 2007,113(1/2):54-58.  

    85. [85]

      Kim H G, Hwang D W, Bae S W. Photocatalytic Water Splitting over La2Ti2O7 Synthesized by the Polymerizable Complex Method[J]. Catal Lett, 2003,91(3):193-198.  

    86. [86]

      Arney D, Porter B, Greve B. New Molten-salt Synthesis and Photocatalytic Properties of La2Ti2O7 Particles[J]. J Photochem Photobiol A, 2008,199(2):230-235.  

    87. [87]

      Hwang D W, Kim H G, Jang J S. Photocatalytic Decomposition of Water-Methanol Solution over Metal-Doped Layered Perovskites under Visible Light Irradiation[J]. Catal Today, 2004,93:845-850.  

    88. [88]

      Nashim A, Martha S, Parida K. Heterojunction Conception of n-La2Ti2O7/p-CuO in the Limelight of Photocatalytic Formation of Hydrogen under Visible Light[J]. RSC Adv, 2014,4(28):14633-14643. doi: 10.1039/c3ra47037g

    89. [89]

      Cai X Y, Zhang J Y, Fujitsuka M. Graphitic-C3N4 Hybridized N-Doped La2Ti2O7 Two-dimensional Layered Composites as Efficient Visible-Light-Driven Photocatalyst[J]. Appl Catal B-Environ, 2017,202:191-198. doi: 10.1016/j.apcatb.2016.09.021

    90. [90]

      Kim H, Hwang D, Kim Y. Highly Donor-Doped (110) Layered Perovskite Materials as Novel Photocatalysts for Overall Water Splitting[J]. Chem Commun, 1999,12:1077-1078.  

    91. [91]

      Hwang D W, Kim H G, Lee J S. Photocatalytic Hydrogen Production from Water over M-doped La2Ti2O7(M=Cr, Fe) under Visible Light Irradiation(λ>420 nm)[J]. J Phys Chem B, 2005,109(6):2093-2102. doi: 10.1021/jp0493226

    92. [92]

      Meng F K, Hong Z L, Arndt J. Visible Light Photocatalytic Activity of Nitrogen-Doped La2Ti2O7 Nanosheets Originating from Band Gap Narrowing[J]. Nano Res, 2012,5(3):213-221. doi: 10.1007/s12274-012-0201-x

    93. [93]

      Iizuka K, Wato T, Miseki Y. Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-loaded ALa4Ti4O15(A=Ca, Sr, and Ba) Using Water as a Reducing Reagent[J]. J Am Chem Soc, 2011,133(51):20863-20868. doi: 10.1021/ja207586e

    94. [94]

      Negishi Y, Matsuura Y, Tomizawa R. Controlled Loading of Small Aun Clusters(n=10~39) onto BaLa4Ti4O15 Photocatalysts:Toward an Understanding of Size Effect of Cocatalyst on Water-Splitting Photocatalytic Activity[J]. J Phys Chem C, 2015,119(20):11224-11232. doi: 10.1021/jp5122432

    95. [95]

      Negishi Y, Mizuno M, Hirayama M. Enhanced Photocatalytic Water Splitting by BaLa4Ti4O15 Loaded with~1 nm Gold Nanoclusters Using Glutathione-protected Au 25 Clusters[J]. Nanoscale, 2013,5(16):7188-7192. doi: 10.1039/c3nr01888a

  • 加载中
    1. [1]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    18. [18]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(29)
  • Abstract views(3212)
  • HTML views(913)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return