Citation: ZHANG Maojie, WANG Wei, JU Xiaojie, XIE Rui, LIU Zhuang, CHU Liangyin. Research Progress on Controllable Fabrication of Functional Microfibers from Microfluidic Jet Templates[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1240-1249. doi: 10.11944/j.issn.1000-0518.2017.11.170264 shu

Research Progress on Controllable Fabrication of Functional Microfibers from Microfluidic Jet Templates

  • Corresponding author: JU Xiaojie, juxiaojie@scu.edu.cn
  • Received Date: 1 August 2017
    Revised Date: 4 September 2017
    Accepted Date: 6 September 2017

    Fund Project: the Specialized Research Fund for the Doctoral Program of Higher Education by the Ministry of Education of China 20130181120063the Sichuan Provincial Youth Science and Technology Foundation 2017JQ0027the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China 151070Supported by the Sichuan Provincial Youth Science and Technology Foundation(No.2017JQ0027), the Specialized Research Fund for the Doctoral Program of Higher Education by the Ministry of Education of China(No.20130181120063), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(No.151070)

Figures(6)

  • Controllable fabrication of functional microfibers with diverse structures and compositions are important for their innovation and application. This review summarizes the recent progress on controllable fabrication of functional microfibers with solid, hollow, compartmental, and helical structures from diverse jet templates generated by microfluidics, and hopes to provide scientific guidelines for the design and controllable fabrication of novel functional microfibers.
  • 加载中
    1. [1]

      Wen G Q, Xie R, Liang W G. Microfluidic Fabrication and Thermal Characteristics of Core-Shell Phase Change Microfibers with High Paraffin Content[J]. Appl Therm Eng, 2015,87:471-480. doi: 10.1016/j.applthermaleng.2015.05.036

    2. [2]

      Hwang C M, Khademhosseini A, Park Y. Microfluidic Chip-based Fabrication of PLGA Microfiber Scaffolds for Tissue Engineering[J]. Langmuir, 2008,24(13):6845-6851. doi: 10.1021/la800253b

    3. [3]

      Lin Y S, Huang K S, Yang C H. Microfluidic Synthesis of Microfibers for Magnetic-Responsive Controlled Drug Release and Cell Culture[J]. Plos One, 2012,7(3)e33184. doi: 10.1371/journal.pone.0033184

    4. [4]

      Jiang M Y, Ju X J, Deng K. Microfluidic Synthesis of Composite Hollow Microfibers for K+-responsive Controlled Release Based on Host-guest System[J]. J Mater Chem B, 2016,4(22):3925-3935. doi: 10.1039/C6TB00333H

    5. [5]

      Moutos F T, Freed L E, Guilak F. A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage[J]. Nat Mater, 2007,6(2):162-167. doi: 10.1038/nmat1822

    6. [6]

      Kang E, Choi Y Y, Chae S K. Microfluidic Spinning of Flat Alginate Fibers with Grooves for Cell-Aligning Scaffolds[J]. Adv Mater, 2012,24(31):4271-4277. doi: 10.1002/adma.v24.31

    7. [7]

      Ruta M, Yuranov I, Dyson P J. Structured Fiber Supports for Ionic Liquid-phase Catalysis Used in Gas-phase Continuous Hydrogenation[J]. J Catal, 2007,247(2):269-276. doi: 10.1016/j.jcat.2007.02.012

    8. [8]

      Zhao T Y, Liu Z Y, Nakata K. Multichannel TiO2 Hollow Fibers with Enhanced Photocatalytic Activity[J]. J Mater Chem, 2010,20(24):5095-5099. doi: 10.1039/c0jm00484g

    9. [9]

      Hilke R, Pradeep N, Madhavan P. Block Copolymer Hollow Fiber Membranes with Catalytic Activity and pH-Response[J]. ACS Appl Mater Interfaces, 2013,5(15):7001-7006. doi: 10.1021/am401163h

    10. [10]

      Yang Y, Li H, Chen S. Preparation and Characterization of a Solid Amine Adsorbent for Capturing CO2 by Grafting Allylamine onto PAN Fiber[J]. Langmuir, 2010,26(17):13897-13902. doi: 10.1021/la101281v

    11. [11]

      Kim K, Ingole P G, Kim J. Separation Performance of PEBAX/PEI Hollow Fiber Composite Membrane for SO2/CO2/N2 Mixed Gas[J]. Chem Eng J, 2013,233:242-250. doi: 10.1016/j.cej.2013.08.030

    12. [12]

      Brown A J, Brunelli N A, Eum K. Separation Membranes. Interfacial Microfluidic Processing of Metal-Organic Framework Hollow Fiber Membranes[J]. Scienc, 2014,345(6192):72-75. doi: 10.1126/science.1251181

    13. [13]

      Zhang Y, Bai W, Cheng X. Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs[J]. Angew Chem Int Ed, 2014,53(52):14564-14568. doi: 10.1002/anie.201409366

    14. [14]

      He S, Chen P, Qiu L. A Mechanically Actuating Carbon-Nanotube Fiber in Response to Water and Moisture[J]. Angew Chem Int Ed, 2015,54(49):14880-14884. doi: 10.1002/anie.201507108

    15. [15]

      Yu Y, Fu F, Shang L. Bioinspired Helical Microfibers from Microfluidics[J]. Adv Mater, 2017,29(18)1605765. doi: 10.1002/adma.201605765

    16. [16]

      Park S, Guo Y, Jia X. One-Step Optogenetics with Multifunctional Flexible Polymer Fibers[J]. Nat Neurosci, 2017,20(4):612-621. doi: 10.1038/nn.4510

    17. [17]

      Cho S, Shim T S, Yang S M. High-throughput Optofluidic Platforms for Mosaicked Microfibers Toward Multiplex Analysis of Biomolecules[J]. Lab Chip, 2012,12(19):3676-3679. doi: 10.1039/c2lc40439g

    18. [18]

      Bai H, Sun R, Ju J. Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection[J]. Small, 2011,7(24):3429-3433. doi: 10.1002/smll.v7.24

    19. [19]

      Feng S, Hou Y, Xue Y. Photo-controlled Water Gathering on Bio-inspired Fibers[J]. Soft Matter, 2013,9(39):9294-9297. doi: 10.1039/c3sm51517f

    20. [20]

      He X H, Wang W, Liu Y M. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection[J]. ACS Appl Mater Interfaces, 2015,7(31):17471-17481. doi: 10.1021/acsami.5b05075

    21. [21]

      Zhao Y, Cao X, Jiang L. Bio-mimic Multichannel Microtubes by a Facile Method[J]. J Am Chem Soc, 2007,129(4):764-765. doi: 10.1021/ja068165g

    22. [22]

      Hufenus R, Reifler F A, Maniura-Weber K. Biodegradable Bicomponent Fibers from Renewable Sources:Melt-Spinning of Poly(lactic acid) and Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)][J]. Macromol Mater Eng, 2012,297(1):75-84. doi: 10.1002/mame.v297.1

    23. [23]

      Hu M, Deng R, Schumacher K M. Hydrodynamic Spinning of Hydrogel Fibers[J]. Biomaterials, 2010,31(5):863-869. doi: 10.1016/j.biomaterials.2009.10.002

    24. [24]

      Atencia J, Beebe D J. Controlled Microfluidic Interfaces[J]. Nature, 2005,437(7059):648-655. doi: 10.1038/nature04163

    25. [25]

      Whitesides G M. The Origins and the Future of Microfluidics[J]. Nature, 2006,442(7101):368-373. doi: 10.1038/nature05058

    26. [26]

      Wang W, Xie R, Ju X J. Controllable Microfluidic Production of Multicomponent Multiple Emulsions[J]. Lab Chip, 2011,11(9):1587-1592. doi: 10.1039/c1lc20065h

    27. [27]

      Chu L Y, Utada A S, Shah R K. Controllable Monodisperse Multiple Emulsions[J]. Angew Chem, 2010,46(47):8970-8974.  

    28. [28]

      Daniele M A, Boyd D A, Adams A A. Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications[J]. Adv Healthcare Mater, 2015,4(1):11-28. doi: 10.1002/adhm.v4.1

    29. [29]

      Jeong W, Kim J, Kim S. Hydrodynamic Microfabrication via "On the Fly" Photopolymerization of Microscale Fibers and Tubes[J]. Lab Chip, 2004,4(6):576-580. doi: 10.1039/B411249K

    30. [30]

      Choi C H, Yi H, Hwang S. Microfluidic Fabrication of Complex-shaped Microfibers by Liquid Template-aided Multiphase Microflow[J]. Lab Chip, 2011,11(8):1477-1483. doi: 10.1039/c0lc00711k

    31. [31]

      He X H, Wang W, Deng K. Microfluidic Fabrication of Chitosan Microfibers with Controllable Internals from Tubular to Peapod-like Structures[J]. RSC Adv, 2015,5(2):928-936. doi: 10.1039/C4RA10696B

    32. [32]

      Deng K, Liu Z, Luo F. Controllable Fabrication of Polyethersulfone Hollow Fiber Membranes with a Facile Double Co-axial Microfluidic Device[J]. J Membr Sci, 2017,526:9-17. doi: 10.1016/j.memsci.2016.12.012

    33. [33]

      Zhang Y, Wang C F, Chen L. Microfluidic-Spinning-Directed Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers[J]. Adv Funct Mater, 2015,25(47):7253-7262. doi: 10.1002/adfm.v25.47

    34. [34]

      Wu F, Ju X J, He X H. A Novel Synthetic Microfiber with Controllable Size for Cell Encapsulation and Culture[J]. J Mater Chem B, 2016,4(14):2455-2465. doi: 10.1039/C6TB00209A

    35. [35]

      Shin S J, Park J Y, Lee J Y. "On the Fly" Continuous Generation of Alginate Fibers Using a Microfluidic Device[J]. Langmuir, 2007,23(17):9104-9108. doi: 10.1021/la700818q

    36. [36]

      Cheng Y, Zheng F, Lu J. Bioinspired Multicompartmental Microfibers from Microfluidics[J]. Adv Mater, 2014,26(30):5184-5190. doi: 10.1002/adma.201400798

    37. [37]

      Yoon D H, Kobayashi K, Tanaka D. Simple Microfluidic Formation of Highly Heterogeneous Microfibers Using a Combination of Sheath Units[J]. Lab Chip, 2017,17(8):1481-1486. doi: 10.1039/C7LC00157F

    38. [38]

      Nunes J K, Sadlej K, Tam J I. Control of the Length of Microfibers[J]. Lab Chip, 2012,12(13):2301-2304. doi: 10.1039/c2lc40280g

    39. [39]

      Shi X, Ostrovidov S, Zhao Y. Microfluidic Spinning of Cell-Responsive Grooved Microfibers[J]. Adv Funct Mater, 2015,25(15):2250-2259. doi: 10.1002/adfm.201404531

    40. [40]

      Liu W, Xu Z, Sun L. Polymerization-induced Phase Separation Fabrication:A Versatile Microfluidic Technique to Prepare Microfibers with Various Cross Sectional Shapes and Structures[J]. Chem Eng J, 2017,315:25-34. doi: 10.1016/j.cej.2016.12.137

    41. [41]

      Lan W J, Li S W, Lu Y C. Controllable Preparation of Microscale Tubes with Multiphase Co-laminar Flow in a Double Co-axial Microdevice[J]. Lab Chip, 2009,9:3282-3288. doi: 10.1039/b913247c

    42. [42]

      Lan W J, Li S W, Xu J H. Preparation and Carbon Dioxide Separation Performance of a Hollow Fiber Supported Ionic Liquid Membrane[J]. Ind Eng Chem Res, 2013,52:6770-6777. doi: 10.1021/ie3034152

    43. [43]

      Meng Z J, Wang W, Xie R. Microfluidic Generation of Hollow Ca-alginate Microfibers[J]. Lab Chip, 2016,16(14):2673-2681. doi: 10.1039/C6LC00640J

    44. [44]

      Yu Y, Wei W, Wang Y. Simple Spinning of Heterogeneous Hollow Microfibers on Chip[J]. Adv Mater, 2016,28(31):6649-6655. doi: 10.1002/adma.201601504

    45. [45]

      Yao C, Yu Y, Fu F. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques[J]. ACS Appl Mater Interfaces, 2016,8(2):1080-1086. doi: 10.1021/acsami.5b11445

    46. [46]

      Sun T, Hu C, Nakajima M. On-chip Fabrication and Magnetic Force Estimation of Peapod-like Hybrid Microfibers Using a Microfluidic Device[J]. Microfluid Nanofluid, 2015,18(5/6):1177-1187.  

    47. [47]

      Um E J, Nunes J K, Pico T. Multicompartment Microfibers:Fabrication and Selective Dissolution of Composite Droplet-in-fiber Structures[J]. J Mater Chem B, 2014,2(45):7866-7871. doi: 10.1039/C4TB01666A

    48. [48]

      Yu Y, Wen H, Ma J. Flexible Fabrication of Biomimetic Bamboo-Like Hybrid Microfi Bers[J]. Adv Mater, 2014,26(16):2494-2499. doi: 10.1002/adma.v26.16

    49. [49]

      Tottori S, Takeuchi S. Formation of Liquid Rope Coils in a Coaxial Microfluidic Device[J]. RSC Adv, 2015,5(42):33691-33695. doi: 10.1039/C5RA01037C

    50. [50]

      Zhu A, Guo M. Microfluidic Controlled Mass-Transfer and Buckling for Easy Fabrication of Polymeric Helical Fibers[J]. Macromol Rapid Commun, 2016,37(5):426-432. doi: 10.1002/marc.v37.5

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    11. [11]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    19. [19]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    20. [20]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

Metrics
  • PDF Downloads(7)
  • Abstract views(719)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return