Citation: HUAN Yan, LI Xiaoxiao, TIAN Yumeng, WANG Jie, YANG Xiaoniu. Effect of Polyols on the Morphology and Properties of 1, 4-Phenylene Diisocyanate-Based Microcellular Polyurethane Elastomers[J]. Chinese Journal of Applied Chemistry, ;2017, 34(10): 1110-1116. doi: 10.11944/j.issn.1000-0518.2017.10.170231 shu

Effect of Polyols on the Morphology and Properties of 1, 4-Phenylene Diisocyanate-Based Microcellular Polyurethane Elastomers

  • Corresponding author: WANG Jie, jiewang@ciac.jl.cn YANG Xiaoniu, xnyang@ciac.ac.cn
  • Received Date: 27 June 2017
    Revised Date: 20 July 2017
    Accepted Date: 20 July 2017

    Fund Project: the Jilin Province Key Scientific and Technological Projects 20160204031GXSupported by the Jilin Province Key Scientific and Technological Projects(No.20160204031GX)

Figures(7)

  • Microcellular polyurethane elastomers were obtained by a two-step polymerization using 1, 4-phenylene diisocyanate(PPDI), 1, 4-butanediol(BDO), water, polyethylene tetrahydrofuran ether polyol(PTMEG) and hydrogenated hydroxyl-terminated butadiene polyols(HLBH) as raw materials. Fourier reflection infrared(FTIR-ATR), dynamic mechanical analysis(DMA), differential scanning calorimetry(DSC), universal material testing machine, dynamic fatigue testing machine were used to systematically characterize the microphase separation, low temperature resistance, dynamic heat build-up of the samples. The results show that the microcellular size of the specimens based on two polyols is 100~300 μm wherein the 150 μm is the majority, indicating that the structure of polyols has little influence on the microcellular size. Due to more H-bonds between hard segments, HLBH-based microcellular polyurethane elastomers show better microphase separation than that of PTMEG. There is a wide modulus platform region at -30~150℃ in the modulus-temperature curve for HLBH-based specimens due to its proper microphase separation structure. However, due to the crystallization of the soft segments at low temperature, the modulus of PTMEG-based specimens increases dramatically under 0℃. The stiffness of HLBH-based specimens surpasses that of PTMEG-based specimens at low temperature, and the hysteresis heat production of HLBH-based specimens is less than that of PTMEG-based specimens. Therefore, the former shows better dynamic fatigue performance.
  • 加载中
    1. [1]

      Akindoyo J O, Beg M D H, Ghazali S. Polyurethane Types, Synthesis and Applications-A Review[J]. RSC Adv, 2016,6(115):114453-114482. doi: 10.1039/C6RA14525F

    2. [2]

      Biemond G J E, Feijen J, Gaymans R J. Segmented Block Copolymers with Monodisperse Hard Segments:The Influence of H-Bonding on Various Properties[J]. Macromol Mater Eng, 2010,294(8):492-501.  

    3. [3]

      Król P. Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers[J]. Prog Mater Sci, 2007,52(6):915-1015. doi: 10.1016/j.pmatsci.2006.11.001

    4. [4]

      Barnatt A, Gill A, Drennan D. Flexible Microcellular Polyurethane for Shoe Soles[J]. J Cell Plast, 1977,13(5):333-339. doi: 10.1177/0021955X7701300507

    5. [5]

      Blanco D F, Carrascal I A, Cicero S. Characterization of Mechanical Properties of a Shock Absorber Polyurethane Foam for Elevators. Numerical Fitting of Mechanical Behavior Models for Hyperelastic and Elastomeric Foam Materials[J]. J Test Eval, 2009,38(2):355-360.  

    6. [6]

      CHEN Jiping, BAI Xiaopeng, DING Zhiping. Finite Element Modelling for Dynamic Mechanical Properties of Microcellular Polyurethane Viscoelastic Material[J]. Mater Mech Eng, 2016,40(7):64-67. doi: 10.11973/jxgccl201607015

    7. [7]

      SUN Shaofang, XIN Haobo. Preparation and Performances Research of Microcellular Polyurethane Elastomer for High-Speed Damping Pad[J]. Polyurethane Ind, 2014(5):33-35.  

    8. [8]

      LIU Liangbing, LIU Hongmei, YU Liping. Study on Microcellular Urethane Elastomers for Automobile[J]. Polyurethane Ind, 2000(3):27-30.  

    9. [9]

      ZHANG Huanhuan, WANG Jie, HUANG Guang. Structure and Properties of the Polyurethane Damping Materials Used in Automobiles[J]. Acta Polym Sin, 2016(10):1447-1454.  

    10. [10]

      WANG Jie, TENG Teng, HUAN Yan, et al. Study on the Preparation of Polyurethane Damping Blocks for Car[C]//The 17th Annual Meeting Proceedings of Chinese Polyurethane Industry Association, 2014(in Chinese).

    11. [11]

      Whittaker R E. Cut Growth and Fatigue Properties of Cellular Polyurethane Elastomers[J]. J Appl Polym Sci, 2010,18(8):2339-2353.  

    12. [12]

      Lei Y, Zhou S, Zou H. Effect of Crosslinking Density on Resilient Performance of Low-resilience Flexible Polyurethane Foams[J]. Polym Eng Sci, 2015,55(2):308-315. doi: 10.1002/pen.v55.2

    13. [13]

      Pacheco M F M, Fiorio R, Zattera A J. Efeito da Concentração de Segmentos Rígidos nas Propriedades Físico-mecânicas, Químicas e na Morfologia de Elast meros Microcelulares de Poliuretano[J]. Polímeros, 2007,17(3):234-239. doi: 10.1590/S0104-14282007000300013

    14. [14]

      Pacheco M F M, Bianchi O, Fiorio R. Thermal, Chemical, and Morphological Characterization of Microcellular Polyurethane Elastomers[J]. J Elastom Plast, 2009,41(41):323-338.  

    15. [15]

      Korodi T, Mercu N. Polyurethane Mocrocellurlar Elastomers 1.Effect of Chemical Composition on Tensile Strength and Elongation at Break of Poly(ethylene-butylene adipate) Based Systems[J]. Polymer, 1983,24(10):1321-1326. doi: 10.1016/0032-3861(83)90067-8

    16. [16]

      Htun T K, Lyamkin D I, Shumskaya A N. The Role of Domain Structure in the Development of Thermomechanical and Fatigue Properties of Microcellular Polyurethanes[J]. Polym Sci Ser A+, 2007,49(6):697-701. doi: 10.1134/S0965545X07060107

    17. [17]

      JIANG Wenying, JIANG Zhiguo, LI Xiaoyu. Study on the Preparation of Polyurethane Micropore Elastomer Based NDI[J]. Polyurethane Ind, 2008,23(1):24-26.  

    18. [18]

      WANG Jie, HUAN Yan, LIU Jia, et al. Syntheis and Characterization of PPDI Microporous Polyurethane Material.[C]//The 16th Annual Meeting Proceedings of Chinese Polyurethane Industry Association, 2012(in Chinese).

    19. [19]

      Prolingheuer E C, Lindsey J J, Kleimann H. Naphthalene-1.5-Diisocyanate as a Building Block for High Performance Polyurethane Elastomers[J]. J Elastom Plast, 1989,21(2):100-121. doi: 10.1177/009524438902100204

    20. [20]

      Kazmierczak M E, Fornes R E, Buchanan D R. Investigations of a Series of PPDI-based Polyurethane Block Copolymers.I.General Morphology[J]. J Polym Sci Pol Phys, 1989,27(11):2173-2187. doi: 10.1002/polb.1989.090271102

    21. [21]

      Kazmierczak M E, Fornes R E, Buchanan D R. Investigations of a Series of PPDI-based Polyurethane Block Copolymers.Ⅱ.Annealing Effects[[J]. J Polym Sci Pol Phys, 1989,27(11):2189-2202. doi: 10.1002/polb.1989.090271103

    22. [22]

      Xiao H X, Yang S, Kresta J E. Thermostability of Urethane Elastomers Based on p-Phenylene Diisocyanate[J]. J Elastom Plast, 1994,26(3):237-251. doi: 10.1177/009524439402600303

    23. [23]

      Zimmer B, Nies C, Schmitt C. Chemistry, Polymer Dynamics and Mechanical Properties of a Two-Part Polyurethane Elastomer During and after Crosslinking. Part Ⅰ:Dry Conditions[J]. Polymer, 2017,115:77-95. doi: 10.1016/j.polymer.2017.03.020

    24. [24]

      Sheth J P, Klinedinst D B, Wilkes G L. Role of Chain Symmetry and Hydrogen Bonding in Segmented Copolymers with Monodisperse Hard Segments[J]. Polymer, 2005,46(18):7317-7322. doi: 10.1016/j.polymer.2005.04.041

    25. [25]

      Sheth J P, Klinedinst D B, Pechar T W. Time-Dependent Morphology Development in a Segmented Polyurethane with Monodisperse Hard Segments Based on 1, 4-Phenylene Diisocyanate[J]. Macromolecules, 2005,38(24):10074-10079. doi: 10.1021/ma051063a

    26. [26]

      Sami S, Yildirim E, Yurtsever M. Understanding the Influence of Hydrogen Bonding and Diisocyanate Symmetry on the Morphology and Properties of Segmented Polyurethanes and Polyureas:Computational and Experimental Study[J]. Polymer, 2014,55(18):4563-4576. doi: 10.1016/j.polymer.2014.07.028

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    19. [19]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(4)
  • Abstract views(717)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return