Citation: LIU Xiaodong, CHEN Qingde, SHEN Xinghai. Adsorption Performance of Thorium Dioxide Nanospheres Towards Uranium in the Aqueous Solution of Ammonium Uranyl Tricarbonate[J]. Chinese Journal of Applied Chemistry, ;2017, 34(10): 1177-1185. doi: 10.11944/j.issn.1000-0518.2017.10.170149 shu

Adsorption Performance of Thorium Dioxide Nanospheres Towards Uranium in the Aqueous Solution of Ammonium Uranyl Tricarbonate

  • Corresponding author: CHEN Qingde, qdchen@pku.edu.cn SHEN Xinghai, xshen@pku.edu.cn
  • Received Date: 11 May 2017
    Revised Date: 12 June 2017
    Accepted Date: 4 July 2017

    Fund Project: Science Challenge Project TZ2016004the National Natural Science Foundation of China 91226112Supported by Science Challenge Project(No.TZ2016004), the National Natural Science Foundation of China(No.U1507203, No.91226112)the National Natural Science Foundation of China U1507203

Figures(5)

  • Thorium dioxide(ThO2), a kind of actinide metal oxides, has good performance as adsorbent, but it is necessary to extend their application scope. In the present work, we investigated the adsorption property of ThO2 nanospheres prepared by hydrothermal method in the aqueous solution of ammonium uranyl tricarbonate. In the presence of 2 mmol/L NH4HCO3 and 20 mmol/L tris(hydroxymethyl)aminomethane)-HCl, ThO2 nanospheres had an adsorption capacity of 6.52 mg/g when the initial concentration of uranium was 20 mg/L, which followed pseudo-second-order kinetic model well. In isothermal adsorption studies, Freundlich model was preferable. The desorption of ThO2 nanospheres after adsorption was achieved easily by using dilute HCl solution. In the mechanism research, it was found that ThO2 nanospheres have negative charges under the experiment conditions and adsorb UO22+ via cation adsorption mechanism. However, the uranium uptake was seriously affected by other cations, such as Ca2+, Cu2+ and Ni2+. This work will contribute to the recovery of uranium from seawater and alkaline/neutral radioactive waste by metal oxides.
  • 加载中
    1. [1]

      Jayaraman V, Krishnamurthy D, Ganesan R. Development of Yttria-Doped Thoria Solid Electrolyte for Use in Liquid Sodium Systems[J]. Ionics, 2007,13(5):299-303. doi: 10.1007/s11581-007-0113-z

    2. [2]

      Antony S A, Nagaraja K S, Sreedharan O M. Preparation of 15mol% YO1.5-Doped ThO2 Disk Electrolytes by a Polymeric Gel-Combustion Method[J]. J Nucl Mater, 2001,295(2/3):189-192.  

    3. [3]

      Cosentino I C, Muccillo R. Properties of Thoria-Yttria Solid Electrolytes Prepared Citrate Technique[J]. Mater Lett, 1997,32(5/6):295-300.  

    4. [4]

      Jacobs G, Crawford A, Williams L. Low Temperature Water-Gas Shift:Comparison of Thoria and Ceria Catalysts[J]. Appl Catal A-Gen, 2004,267(1/2):27-33.  

    5. [5]

      Baidya T, van Vegten N, Baiker A. Selective Conversion of Ethane to Ethene via Oxidative Dehydrogenation over Ca-Doped ThO2 Using CO2 as Oxidant[J]. Top Catal, 2011,54(13/15):881-887.  

    6. [6]

      Tabakova T, Idakiev V, Tenchev K. Pure Hydrogen Production on a New Gold-Thoria Catalyst for Fuel Cell Applications[J]. Appl Catal B-Environ, 2006,63(1/2):94-103.  

    7. [7]

      Wang L, Zhao R, Wang X W. Size-Tunable Synthesis of Monodisperse Thorium Dioxide Nanoparticles and Their Performance on the Adsorption of Dye Molecules[J]. CrystEngComm, 2014,16(45):10469-10475. doi: 10.1039/C4CE01731E

    8. [8]

      Mishra S P, Tiwary D. Ion Exchangers in Radioactive Waste Management-Radiotracer Studies on Adsorption of Ba(Ⅱ) and Sr(Ⅱ) Ions on Hydrous Thorium Oxide[J]. J Radioanal Nucl Chem, 1995,196(2):353-361. doi: 10.1007/BF02038055

    9. [9]

      Gupta S K, Gupta R, Natarajan V. Warm White Light Emitting ThO2:Sm3+ Nanorods:Cationic Surfactant Assisted Reverse Micellar Synthesis and Photoluminescence Properties[J]. Mater Res Bull, 2014,49:297-301. doi: 10.1016/j.materresbull.2013.09.010

    10. [10]

      Gupta S K, Ghosh P S, Arya A. Origin of Blue Emission in ThO2 Nanorods:Exploring It as a Host for Photoluminescence of Eu3+, Tb3+ and Dy3+[J]. RSC Adv, 2014,4(93):51244-51255. doi: 10.1039/C4RA09681A

    11. [11]

      Gupta A R, Venkataramani B. Sorption of Uranyl Ions on Hydrous Oxides. A New Surface Hydrolysis Model[J]. Bull Chem Soc Jpn, 1988,61(4):1357-1362. doi: 10.1246/bcsj.61.1357

    12. [12]

      Wang Y M, Chen Q D, Shen X H. Preparation of Low-Temperature Sintered UO2 Nanomaterials by Radiolytic Reduction of Ammonium Uranyl Tricarbonate[J]. J Nucl Mater, 2016,479:162-166. doi: 10.1016/j.jnucmat.2016.07.003

    13. [13]

      Liu X Y, Liu H Z, Ma H J. Adsorption of the Uranyl Ions on an Amidoxime-Based Polyethylene Nonwoven Fabric Prepared by Preirradiation-Induced Emulsion Graft Polymerization[J]. Ind Eng Chem Res, 2012,51(46):15089-15095. doi: 10.1021/ie301965g

    14. [14]

      Singh K, Shah C, Dwivedi C. Study of Uranium Adsorption Using Amidoximated Polyacrylonitrile-Encapsulated Macroporous Beads[J]. J Appl Polym Sci, 2013,127(1):410-419. doi: 10.1002/app.37684

    15. [15]

      Sun Y B, Yang S T, Sheng G D. Comparison of U(Ⅵ) Removal from Contaminated Groundwater by Nanoporous Alumina and Non-Nanoporous Alumina[J]. Sep Purif Technol, 2011,83:196-203. doi: 10.1016/j.seppur.2011.09.050

    16. [16]

      WANG Yafei, YU Xia, ZHU Yu. Preparation of Activated Carbon from Waste Residue of Chinese Prickly Ash Seeds Activated with K2CO3 and Its Adsorption Properties for p-Nitrophenol[J]. Chinese J Appl Chem, 2017,34(5):597-605.  

    17. [17]

      Amphlett C B, McDonald L A, Redman M J. Synthetic Inorganic Ion-exchange Materials(Ⅱ)[J]. J Inorg Nucl Chem, 1958,6(3):236-245. doi: 10.1016/0022-1902(58)80153-0

    18. [18]

      Parks G A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems[J]. Chem Rev, 1965,65(2):177-198. doi: 10.1021/cr60234a002

    19. [19]

      Tertre E, Castet S, Berger G. Surface Chemistry of Kaolinite and Na-Montmorillonite in Aqueous Electrolyte Solutions at 25 and 60℃:Experimental and Modeling Study[J]. Geochim Cosmochim Acta, 2006,70(18):4579-4599. doi: 10.1016/j.gca.2006.07.017

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    20. [20]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

Metrics
  • PDF Downloads(3)
  • Abstract views(808)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return