Citation: ZHANG Qingxuan, QU Xueli. Effect of Pressure on Pyrolysis Characteristics of Four-Components of Tarim Crude Oil[J]. Chinese Journal of Applied Chemistry, ;2017, 34(10): 1202-1208. doi: 10.11944/j.issn.1000-0518.2017.10.160500 shu

Effect of Pressure on Pyrolysis Characteristics of Four-Components of Tarim Crude Oil

  • Corresponding author: ZHANG Qingxuan, zhangqx@upc.edu.cn
  • Received Date: 8 December 2016
    Revised Date: 9 March 2017
    Accepted Date: 2 May 2017

    Fund Project: Supported by the Fundamental Research Funds for the Central Universities(No.09CX04030A), the State Key Laboratory of Heavy Oil Processing(No.F0904009-10)the State Key Laboratory of Heavy Oil Processing F0904009-10the Fundamental Research Funds for the Central Universities 09CX04030A

Figures(7)

  • There are debates on the influence of pressures on chemical processes of crude oil in reservoirs. To investigate the effect of pressure on the pyrolysis of crude oil into gas in the reservoir, the compositions and contents of the gas products produced by pyrolysis reactions of four components separated from the Tarim crude oil and that of liquid products from saturates of Tarim crude oil under 450℃ and 5~40 MPa were analyzed by gas chromatography(GC) and GC mass spectrometry GC/MS, respectively. The results show that more gas is obtained in pyrolysis of asphaltene than resins, aromatics and saturates. The amount of C1 in hydrocarbon gases generated by pyrolysis of the four-components is significantly higher than that of C2~C5 components. Increasing pressure decreases the yield of hydrocarbon gas generation in the pyrolysis process of asphaltene, resin and aromatics, but promotes the production of hydrocarbon gas in saturates pyrolysis. The liquid pyrolysis products transform to hydrocarbon compounds of low carbon numbers then to high carbon numbers with the pressure increase. The pyrolysis process is dominated by thermal cracking of the components in saturates under pressures less than 20 MPa. The study provides the theoretical reference for the crude oil stability and the natural gas formation in deep reservoirs.
  • 加载中
    1. [1]

      Guo L G, Tian H, Jin Y B. Reaction Mechanism, Medium Influencing Factors and Identification and Evaluation of Oil-cracking Gas[J]. Geochimica, 2008,37(5):499-511.  

    2. [2]

      Xiao Q L, Sun Y G, Zhang Y D. The Role of Reservoir Mediums in Natural Oil Cracking:Preliminary Experimental Results in a Confined System[J]. Chinese Sci Bull, 2010,55(33):3787-3793. doi: 10.1007/s11434-010-4178-0

    3. [3]

      Wang Z M, Luo X R, Chen R Y. Effects and Influences of Pore Pressures on Organic Matter's Maturation[J]. Adv Earth Sci, 2006,21(1):39-46.

    4. [4]

      Pan C C, Jing L L, Liu J Z. The Effects of Calcite and Montmorillonite on Oil Cracking in Confined Pyrolysis Experiments[J]. Org Geochem, 2010,41(7):611-626. doi: 10.1016/j.orggeochem.2010.04.011

    5. [5]

      Fabuss B M, Smith J O, Satterfield C N. Thermal Cracking of Pure Saturated Hydrocarbons[M]. In:McKetta J(Ed.). Advances in Petroleum Chemistry and Refining. New York:Wiley and Sons, 1964:156-201.

    6. [6]

      Behar F, Vandenbroucke M. Experimental Determination of Rate Constants of the n-C25 Thermal Cracking at 120, 140, and 800 bar:Implication for High-pressure/High-temperature Prospects[J]. Energy Fuels, 1996,10(4):932-940. doi: 10.1021/ef9600366

    7. [7]

      Chen Z H, Zhang S C, Zha M. Geochemical Evolution During the Cracking of Crude Oil into Gasunder Different Pressure Systems[J]. Sci China Earth Sci, 2014,57(3):480-490. doi: 10.1007/s11430-013-4712-4

    8. [8]

      Hill R J, Tang Y C, Kaplan I R. The Influence of Pressure on the Thermal Cracking of Oil[J]. Energy Fuels, 1996,10(4):873-882. doi: 10.1021/ef9501408

    9. [9]

      Darouich T A, Behar F, Largeau C. Pressure Effect on the Thermal Cracking of the Light Aromatic Fraction of Safaniya Crude Oil-Implications for Deep Prospects[J]. Org Geochem, 2006,37(9):1155-1169. doi: 10.1016/j.orggeochem.2006.04.004

    10. [10]

      Xie L J, Sun Y G, Ugunam C N. Thermal Cracking of Oil under Water Pressure up to 900 bar at High Thermal Maturities.1.Gas Compositions and Carbon Isotopes[J]. Energy Fuels, 2016,30(4):2617-2627. doi: 10.1021/acs.energyfuels.5b02792

    11. [11]

      Wang T S, Geng A S, Li X. Pyrolysis of One Crude Oil and Its Asphaltenes:Evolution of Gaseous Hydrocarbons and Carbon Isotope[J]. J Pet Sci Eng, 2010,71(1/2):8-12.  

    12. [12]

      Burkle-Vitzthum V, Michels R, Scacchi G. Kinetic Effect of Alkylaromatics on the Thermal Stability of Hydrocarbons under Geological Conditions[J]. Org Geochem, 2004,35(1):3-31. doi: 10.1016/j.orggeochem.2003.06.001

    13. [13]

      Li E T, Pan C C, Yu S. Interaction of Coal and Oil in Confined Pyrolysis Experiments:Insight from the Yields and Carbon Isotopes of Gas and Liquid Hydrocarbons[J]. Mar Pet Geol, 2016,69:13-37. doi: 10.1016/j.marpetgeo.2015.10.006

    14. [14]

      DENG Wen'an, LIU Chenguang, MU Baoquan. Petroleum Chenistry Experiment Handouts[M]. Dongying:China University of Petroleum Press, 1999:1-7(in Chinese).

    15. [15]

      LIANG Wenjie. Heavy Oil Chemistry[M]. Dongying:China University of Petroleum Press, 2000:64, 77(in Chinese).

    16. [16]

      WANG Zijun, LIANG Wenjie, QUE Guohe. Investigation of Chemical Structure of Fractions of Daqing Vacuum Residue by Ruthenium Ions Catalyzed Oxidation[J]. J Fuel Chem Technol, 1999,27(2):102-109.  

    17. [17]

      ZHANG Zhan'gang, GUO Shaohui, YAN Guangxu. Chemical Structural Features of Fractions from Dagang Vacuum Residue[J]. J Fuel Chem Technol, 2007,35(5):553-557.  

    18. [18]

      Song C, Lai W C, Schobert H H. Condensed-phase Pyrolysis of n-Tetradecane at Elevated Pressures for Long Duration. Product Distribution and Reaction Mechanisms[J]. Ind Eng Chem Res, 1994,33(3):534-547. doi: 10.1021/ie00027a010

    19. [19]

      Chakraborty J P, Kunzru D. High Pressure Pyrolysis of n-Heptane[J]. J Anal Appl Pyrolysis, 2009,86(1):44-52. doi: 10.1016/j.jaap.2009.04.001

    20. [20]

      JIANG Feng, DU Jianguo, WANG Wanchun. The Study on High Pressure High Temperature Aqueous Pyrolysis Ⅱ.Evolutionary Characteristics of Alkane Generated from Organic Matter under High Temperature and High Pressure[J]. Acta Sedimentol Sin, 1998,16(4):145-148.  

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    11. [11]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(0)
  • Abstract views(155)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return